A JVM for the Barrelfish Operating System

2nd Workshop on Systems for Future Multi-core Architectures
(SFMA'12)

Martin Maas (University of California, Berkeley)
Ross Mcllroy (Google Inc.)

10 April 2012, Bern, Switzerland

Introduction

v

Future multi-core architectures will presumably...

> ...have a larger numbers of cores

> ...exhibit a higher degree of diversity

> ...be increasingly heterogenous

» ...have no cache-coherence/shared memory

» These changes (arguably) require new approaches for
Operating Systems: e.g. Barrelfish, fos, Tessellation,...

> Barrelfish's approach: treat the machine's cores as nodes in a
distributed system, communicating via message-passing.

» But: How to program such a system uniformly?
» How to exploit performance on all configurations?

» How to structure executables for these systems?

Introduction

v

Answer: Managed Language Runtime Environments (e.g.
Java Virtual Machine, Common Language Runtime)

v

Advantages over a native programming environment:
» Single-system image
» Transparent migration of threads
» Dynamic optimisation and compilation
» Language extensibility

v

Investigate challenges of bringing up a JVM on Barrelfish.

v

Comparing two different approaches:

» Convential shared-memory approach
» Distributed approach in the style of Barrelfish

Outline

1. The Barrelfish Operating System
2. Implementation Strategy

» Shared-memory approach
» Distributed approach

3. Performance Evaluation
4. Discussion & Conclusions
5. Future Work

The Barrelfish Operating System

» Barrelfish is based on the Multikernel Model: Treats
multi-core machine as a distributed system.

» Communication through a lightweight message-passing library.

» Global state is replicated rather than shared.

‘ Domain

‘ App

Disp Disp

o | s

‘ Dispatcher ‘

[Jo—r[o Jo—s

‘ Monitor j

User Mode

Kernel Mode

‘ CPU Driver

CPU Driver

‘ CPU Driver

Implementation

> Running real-world Java applications would require bringing
up a full JVM (e.g. the Jikes RVM) on Barrelfish.

» Stresses the memory system (virtual memory is fully managed
by the JVM), Barrelfish lacked necessary features (e.g. page
fault handling, file system).

» Would have distracted from understanding the core challenges.

» Approach: Implementation of a rudimentary Java Bytecode
interpreter that provides just enough functionality to run
standard Java benchmarks (Java Grande Benchmark Suite).

» Supports 198 out of 201 Bytecode instructions (except wide,
goto_w and jsr_w), Inheritance, Strings, Arrays, Threads,...

» No Garbage Collection, JIT, Exception Handling, Dynamic
Linking or Class Loading, Reflection,...

Shared memory vs. Distributed approach

Heap

Shared memory

run_func_on 20500007

SNSSNSS N

‘HHII" ‘HHIE” ‘IHIH’ ‘HHII'

Distributed Approach

—1 JVMo
T

return in

voke

W
VM2

move_object

—
é—____________——

move_object_ack

JvM1l

putfield

—
é—____________——

putfield.ack

JVM3

‘HHIH'

The distributed approach

jvm-nodeO jvm-nodel jvm-node2 -
1 1 1 1
1 obj_request 1 1 1
k » 1 1
o ! obj-rdquest ! !
_a 1 J Iq 1
g) i ' j |
21 1 obj-request |
+ N/
9 T K
a3 1 1
o blocks obj.request_response !
1 1
1 1 1 1
1 1 1 1
1 1 1 1
! invoke kirtual ! !
N) . 1
- 1 i 1
= tfield
g . 1 getfie
o 1
o 4 1 H getfield_response
° 1
= invoke:,return [
1
1
1
1
1
1
1
1
1

Performance Evaluation

» Performance evaluation using the sequential and parallel Java
Grande Benchmarks (mostly Section 2 - compute kernels).

» Performed on a 48-core AMD Magny- Cours (Opteron 6168).
» Four 2x6-core processors, 8 NUMA nodes (8GB RAM each).

» Evaluation of the shared-memory version on Linux (using
numactl to pin cores) and Barrelfish.

» Evaluation of the distributed version only on Barrelfish.

» Compared performance to industry-standard JVM (OpenJDK
1.6.0) with and without JIT compilation.

Sequential Performance

T T T
@ OpenJDK (JIT)
mm OpenJDK (No JIT)
3 JVM (Linux)
3 JVM (Barrelfish)

SparseMatmult

SOR

Series

LUFact

HeapSort

FFT

Crypt

0 10 20 30 40 50 60 70

Execution time in s

Performance of the shared-memory approach

in's (log scale)

Execution time

> Using the parallel sparse matrix multiplication Java Grande
benchmark JGFSparseMatmultBenchSizeB

Raw Performance Speed-up

JGFSparseMaimuliBenchSize8 JGFSparseMatmultBenchSizeB

100

Linux —o—
ifish Jfsh, Shar ——
Barallh V¥ (arrlfsh, Shared Memory! —e— - Barelfish (shared) .~

DK —<—

Speed-up

50 o 5 10 15 20 25 30 35 40 5 50
Number of cores

Performance of the distributed approach

2,478.17 |

2,386.94

Thread (running on jvm-nodex)

.
400 800 1200 1600 2000 2400 2,800

Execution time in s

Cores Run-timeins o (Standard deviation)
1 2.70 0.002
2 458 7.891
3 396 3.545
4 402 7.616
5 444 2.128
6 514 36.77
7 1764 247.7
8 2631 335.9
16 9334 (only executed once)

u]
o)
I
i
it

Discussion

» Performance of shared-memory approach is similar on Linux
and Barrelfish (overhead arguably from agreement protocols).

» Distributed approach is orders of magnitude slower. Overhead
caused by inter-core communication (150-600 cycles) and
message handling in Barrelfish.

» For this benchmark, have to exchange 7 pairs of messages for
each iteration of the kernel, while shared-memory approach
requires almost no inter-core communication.

» How can these overheads be alleviated?

» Caching of objects and arrays (reduce communication).
» Hardware support for message-passing (e.g. Intel SCC).

Conclusion & Future Work

> Preliminary results show that future work should focus on
reducing message-passing overhead and number of messages.
» Promising future work for the JVM:
» A caching protocol for arrays, similar to a directory-based MSI
cache coherence protocol.
» Running the Barrelfish JVM on the Intel SCC.
» Additional areas of interest:
» Garbage Collection on such a system.
> Relocation of objects at run-time.
» Future work should investigate bringing up the Jikes RVM on
Barrelfish, focussing on these aspects.

Questions?

