
A JVM for the Barrelfish Operating System

Martin Maas
∗

UC Berkeley
maas@cs.berkeley.edu

Ross McIlroy
†

Google Inc.
rmcilroy@google.com

ABSTRACT
Barrelfish is a research operating system based on the Mul-
tikernel model, an OS structure that treats heterogeneous
multi-core systems as a network of independent nodes com-
municating via message-passing. Arguably, such a system
can benefit from high-level programming models such as
the Java Virtual Machine, since they can provide a single-
system image and facilitate migration of threads between
cores, making the system easier to program. This work in-
vestigates the core challenges of this approach by bringing up
a JVM on Barrelfish. We compare two different implemen-
tations, one based on shared memory, the other on message
passing (enabling it to run on non-cache coherent systems).

1. INTRODUCTION
The past years have seen tremendous changes in hardware
for commodity computer systems: Core counts are increas-
ing and systems are becoming more diverse as new types
of caches, interconnects and coprocessors (such as GPUs or
programmable network adapters) appear. There is also a
sense that future architectures will likely be non-cache co-
herent. For example, Mattson et al. [7] claim that the cost
of cache coherence protocols prevents scaling to ever larger
number of cores and that cores should instead communicate
via message passing (such as the Intel SCC [8]).

This development puts challenges on operating systems as
well as application programmers, who will have to take these
new architectures into account. Arguably, higher-level pro-
gramming models, such as the Java Virtual Machine (JVM),
can help to hide these changes from the programmer. At the
same time, there is a desire to run existing applications writ-
ten for these programming models on novel architectures.

We investigate two different approaches of implementing
a JVM for this kind of system. Our baseline approach uses
shared memory and relies on hardware cache coherence. We

∗Work performed while at the University of Cambridge.
†Work performed while at Microsoft Research, Cambridge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

then show a distributed version where each core is hosting
a separate instance of the JVM (managing a different part
of the heap) and communicates with the other instances via
message passing. This allows us to assess the feasibility of
such an approach and identify challenges in bringing a JVM
to non-cache coherent systems.

The JVM is built on top of the Barrelfish operating sys-
tem [3]. Barrelfish is based on the Multikernel model, an
OS design that treats heterogeneous multi-core systems as a
network of independent nodes communicating via message-
passing. By doing so, it can exploit message-passing hard-
ware while maintaining compatibility with shared memory
architectures. State is replicated rather than shared, and
traditional OS functionality such as memory management,
I/O or power management is implemented as services run-
ning on different OS nodes. More information on Barrelfish
is given in Section 4.

The main contributions of this paper are to show an early
approach of implementing a JVM for novel architectures and
operating systems like Barrelfish. It then shows the associ-
ated challenges, in particular the overhead of message pass-
ing, as well as identifying work necessary to solve them.

2. MOTIVATION
Writing applications for non-cache coherent and heteroge-
neous many-core systems is difficult and systems like Bar-
relfish require significant porting efforts to run existing ap-
plications. These problems can be alleviated by the use of
a high-level runtime environment such as a JVM. Such a
model has several advantages over the traditional model of
writing explicit distributed applications:

• Single-system image: The run-time hides the dis-
tributed nature of the system, allowing it to run soft-
ware that has not explicitly been developed for hetero-
geneous many-core systems. McIlroy et al. [9] showed
that a JVM is a suitable abstraction for such systems.

• Transparent migration of threads: Migration of
threads between heterogeneous cores is difficult in the
current model, since it requires code to be compiled for
each ISA and state to be translated between the differ-
ent architectures. In a JVM, it is sufficient to provide
a run-time environment for each core type, since code
and state of the program are hardware-independent.

• Optimisations: The JVM provides high-level infor-
mation (such as class structures) that can be used to
optimise the code, e.g. by using this information for
scheduling decisions or adaptive recompilation.

• Extensibility: Java can be extended using annota-
tions and language extensions, which makes it possible
to gather additional information from the programmer
to improve scalability to many-core architectures.

Some of these advantages also apply to parallel programming
models such as Cilk. However, Java has several advantages
over these models: It is a general-purpose programming lan-
guage and is widely adopted for both client and server ap-
plications. This is important since Barrelfish targets com-
modity systems rather than HPC scenarios. The high adop-
tion also means that there are stable benchmarks, develop-
ment tools and libraries available. Furthermore, Java has
the advantage of having excellent open source implementa-
tions and being prevalent in scientific research [4].

3. APPROACH AND GOALS
One way to approach this task would have been to port an
existing JVM, such as the Jikes RVM [4]. While this will
eventually be required to run real-world Java applications,
we discarded it for the first iteration. Jikes requires memory
management and file system facilities that were not yet avail-
able on Barrelfish (e.g. page fault handling, a hierarchical
file system for the class loader). Porting Jikes would there-
fore have been a major effort that would have distracted
from understanding the fundamental challenges of provid-
ing a high-level run-time on a system like Barrelfish. We
found it important to understand those challenges first.

We therefore decided to implement a rudimentary Java
Bytecode interpreter that provides just enough functional-
ity to run a set of benchmarks and simple programs (we use
the Java Grande Benchmark Suite [6]). While this means
that the absolute numbers have to be treated with care, the
preliminary results from this prototype allow us to investi-
gate challenges that any JVM will have to deal with when
running on Barrelfish. They can therefore be used as a first
step towards porting a full JVM.

4. BACKGROUND
Several OS designs have been proposed to deal with the
problems introduced by heterogeneous and non-cache coher-
ent many-core systems [3, 11, 12].

Barrelfish’s approach is based on the Multikernel model [3].
It runs an instance of the OS on each of the system’s cores
and inter-core communication is made explicit and imple-
mented as a light-weight message passing library. While
Barrelfish provides implementations of libraries such as libc
that hide the distributed nature of the system for certain
system calls (e.g. malloc), the programmer has to be aware
of the distributed nature of the system and adopt an event-
based software design. Each kernel instance contains the
following core components (Figure 1):

• CPU Driver: This is Barrelfish’s equivalent to a tra-
ditional kernel. It schedules and mediates core access
of user-level processes, handles interrupts and provides
local inter-process communication and low-level prim-
itives for inter-core signalling (e.g. inter-processor in-
terrupts). The CPU driver is lightweight and abstracts
away little, while hiding the underlying hardware from
the rest of the system. This allows Barrelfish to sup-
port heterogeneous systems, since the CPU driver ex-
poses an ABI that is (mostly) independent from the
underlying architecture of the core.

2.2. THE BARRELFISH OPERATING SYSTEM 25

Hardware

Software

User Mode

Kernel Mode

CPU

CPU Driver

Monitor

Dispatcher

CPU

CPU Driver

Monitor

Disp Disp

CPU

CPU Driver

Monitor

Dispatcher

App App
Domain

Figure 2.3: Interactions between Barrelfish’s core components

from the rest of the system. This allows Barrelfish to support heterogeneous
systems, since the CPU driver exposes an ABI that is (mostly) independent
from the underlying architecture of the core.

Monitor: The monitor runs in user-mode and together, the monitors across
all cores coordinate to provide most traditional OS functionality, such as
memory management, spanning domains between cores and managing timers.
Monitors communicate with each other via inter-core communication. Global
OS state (such as memory mappings) is replicated between the monitors and
kept consistent using agreement protocols.

Dispatchers: Each core runs one or more dispatchers. These are user-
level thread schedulers that are up-called by the CPU driver to perform the
scheduling for one particular process. Since processes in Barrelfish can span
multiple cores, they may have multiple dispatchers associated with them, one
per core on which the process is running. Together, these dispatchers form the
“process domain”. Dispatchers are responsible for spawning threads on the
di↵erent cores of a domain, performing user-level scheduling and managing

Figure 1: Barrelfish’s core components

• Monitor: The monitor runs in user-mode and to-
gether, the monitors across all cores coordinate to pro-
vide most traditional OS functionality, such as memory
management or timers. Monitors communicate with
each other via inter-core communication. Global state
(e.g. memory mappings) is replicated between moni-
tors and kept consistent using agreement protocols.

• Dispatchers: Each core runs one or more dispatch-
ers, a user-level thread scheduler that is called by the
CPU driver to perform the scheduling for a particular
process. Since processes in Barrelfish can span mul-
tiple cores, they may have multiple dispatchers asso-
ciated with them, one per core on which the process
is running. Together, these dispatchers form a “do-
main”, which shares a virtual address space on archi-
tectures that support shared memory. Dispatchers are
responsible for spawning threads, performing user-level
scheduling and managing thread synchronisation (e.g.
waking up threads on remote cores). They commu-
nicate via message passing and replicate per-process
state across the domain’s cores.

Additionally, cores may run drivers, applications and system
services. Communication between these services works via
message passing as well. To enable connections between
specific services, Barrelfish provides a global nameservice.

The low-level support for inter-core communication de-
pends on the hardware and is implemented in the CPU
driver. On a system that supports message passing in hard-
ware, Barrelfish will use those capabilities, while on a shared-
memory system, it will use the cache coherence protocol.
Based on these primitives, the system provides a user-level
RPC mechanism, exposed via a library that provides meth-
ods to poll for messages, set up handler methods, connect
to other cores and send messages to them.

5. IMPLEMENTATION
The Barrelfish JVM comprises a class loader, linker and Java
Bytecode interpreter supporting 198 out of the 201 instruc-
tions (the missing instructions are wide, goto_w and jsr_w).
It supports many core Java features such as inheritance,
strings, arrays, threads and synchronization. However, the
JVM does not support garbage collection, just-in-time com-
pilation, dynamic linking (classes are statically linked at
start-up), exception handling and reflection. These features
are not required to run most Java Grande benchmarks.

52 CHAPTER 3. IMPLEMENTATION

3.6 The Shared-Memory JVM

The first approach to support execution across multiple cores on Barrelfish
uses shared memory, similar to the approach on a traditional operating sys-
tem. As explained in Section 2.2.3, Barrelfish supports this by spanning a
domain across multiple dispatchers.

JVM
run func on

obj A obj B obj C obj DHeap

Domain

Figure 3.11: Overview of the shared approach

The JVM is first launched on a single core. It then spans a domain to di↵erent
cores, using a Barrelfish API that enables it to spawn a new dispatcher on a
di↵erent core and set up a connection between the two. Once this has been
done, the JVM can create threads on the remote core, similar to creating
local pthreads (Figure 3.11).

One of the main di↵erences to Linux is that this solution requires the JVM
to explicitly choose which core to run a thread on. I therefore implemented a
DomainThread class which implements java.lang.Runnable and takes the
core to run on as a parameter. The java.lang.Thread class then creates
instances of DomainThread and assigns them, on creation, to di↵erent cores
in a round-robin manner.

Figure 2: The Shared-memory approach

The JVM was mostly written in C and runs on Linux and
Barrelfish. On Linux, it uses glibc and pthreads to imple-
ment most of its functionality. On Barrelfish, it runs as a
service on one of the cores and provides an RPC interface to
run a class’s main() function. This can then be called from
the Barrelfish shell. Our version of Barrelfish did not pro-
vide a file system. Hence, all Java class files were packaged
with the JVM’s executable and loaded by the boot loader.

While this JVM can spawn threads on multiple cores on
Linux (and on a single core on Barrelfish), more work was
required to run it on multiple cores on Barrelfish. As ex-
plained earlier, we investigated two different approaches:

5.1 The Shared-Memory JVM
This approach is similar to the one used on a traditional
operating system: The JVM is first launched on a single
core. As explained in Section 4, it then spans a domain
to different cores, using a Barrelfish API that enables it to
spawn new dispatchers. Once this has been done, the JVM
can create threads on the remote core, similar to creating
local pthreads (Figure 2). New threads are assigned to the
different cores in a round-robin manner and spin locks are
used for synchronization, as they gave significantly better
performance than mutexes on Barrelfish. When operating
in user-mode, this system is essentially the same as on Linux.

5.2 The Distributed JVM
This approach avoids the need for shared memory by run-
ning an instance of the JVM on every core and communicat-
ing solely via message passing (Figure 3). Our implemen-
tation is näıve, with many opportunities for optimisation.
It is inspired by dJVM [14]: Each object has a home node
where it resides. When a core performs an operation on an
object, it sends a message to the object’s home node, which
executes the operation and returns an acknowledgement.

Multiple server instances are launched on startup, each on
a different core and with a unique name (e.g. jvm-node0).
Each of the nodes provides and manages its own set of com-
ponents, including loader, linker and heap. The policy for
choosing home nodes is simple: an object’s home node is
the node that executed the new instruction that created it
(future work could investigate more elaborate schemes).

3.7. THE DISTRIBUTED JVM 53

Another di↵erence to Linux is the use of spinlocks as synchronisation primi-
tives, since mutexes did not work across multiple cores in the earlier version
of Barrelfish. While I provided my own, experimental implementation of this
feature, I eventually decided to use spinlocks as they gave significantly better
performance.

3.7 The Distributed JVM

The second approach for running the Barrelfish JVM on multiple cores is
significantly more complex. It avoids the need for shared memory by running
an instance of the JVM on every core and communicating solely via message
passing (Figure 3.12).

I use an approach inspired by the dJVM [51] project. Each object has an
associated home node where it resides. When a core performs an operation
on an object, it sends a message to the object’s home node, which executes
the operation and returns an acknowledgement once it is finished.

JVM0 JVM1

JVM2 JVM3

move object

move object ack

invokereturn

putfield

putfield ack

obj A obj B obj C obj D

Figure 3.12: Overview of the distributed approach
Figure 3: The Distributed approach

5.2.1 Inter-core communication
All JVM nodes are completely independent. To communi-
cate with each other, they have to set up point-to-point con-
nections between cores. Each node runs a message-handler
thread that never blocks. This thread handles incoming
messages and spawns new threads as necessary. All other
threads may block at any time. For this purpose, they have
a semaphore associated with them that blocks while e.g.
waiting for a reply from another node. The reply handler
then unblocks the thread and potentially stores the return
value in a structure. To identify the thread that needs to
be unblocked, a pointer to the structure is sent with each
message and returned with the reply.

5.2.2 Object relocation
Moving objects between cores is essential to the distributed
approach. While the JVM currently only relocates objects
during the creation of a new thread (which consists of mov-
ing the Thread object to a different core and performing a
remote method call on its run() function), it could be ex-
tended to relocate objects during the program’s execution,
similar to O2 scheduling [5]. During relocation, the source
node sends the object’s data to the destination node, which
adds it to its heap and replies with an acknowledgement.
Heap references do not change when their entry is moved.

Once the transfer has finished, the source node removes
the objects from its heap and adds an entry to a core table, a
mapping from references to cores. This table represents the
node’s knowledge about the homes of different objects. To
keep references unique across nodes, the first 8 bit of each
reference are set to the id of the node that created it.

While our implementation simply nulls out entries that are
removed from the heap (making it easy to determine whether
an object is on the heap or not), a JVM with garbage col-
lection could e.g. use 24 reference bits (out of 64) as a UID
that is also stored in the object’s header - if the bits do not
match, it means that the object had been removed.

5.2.3 Object lookup
When a node tries to access an object whose location is
unknown to it, the node needs to perform a lookup to de-
termine the object’s home node. There are two basic ap-

3.7. THE DISTRIBUTED JVM 57

jvm-node0 jvm-node1 jvm-node2 jvm-node3

⇥
obj request bcast

obj request bcast

⇥
obj request bcast

obj request responseO
b
je

ct
lo

ok
u
p

blocks

Figure 3.15: Object lookup

sends a message to the remote core (Table 3.2) and blocks the current thread.
When the remote core receives the message, it performs the operation and
sends a reply back to the client, which then unblocks the thread and passes
on the result (Figure 3.16).

Method invocations to remote objects are similar to this. However, the re-
mote core has to spawn a new thread to execute the method, since method
invocations may block and therefore cannot be executed in the message-
handler thread. Method parameters are transmitted using the connection
bu↵er and return values are sent in an appropriate reply message, depending
on the type of the return value.

Operation Message Reply
method call invoke_noparams invoke_return

invoke_allparams invoke_return32

invoke_return64

getfield getfield getfield_response

putfield putfield putfield_ack

aload aload aload_response

astore astore astore_ack

Table 3.2: Messages for remote operations

Figure 4: Object Lookup

proaches to this problem: a central directory of all object-
location mappings or a broadcasting approach. We use the
latter, to keep the JVM decentralised and avoid bottlenecks.

Whenever the interpreter tries to access an object, it first
checks the local heap. If the object cannot be found on the
heap, it tries to look it up in the core table. If the core
table does not contain the object either, the node broad-
casts a request to all other nodes and blocks the current
thread. When a core receives such a request, it checks its
local heap for the object in question and, if the object can be
found, replies to the sender. Upon receipt of the reply, the
core unblocks the thread and enters the new object-location
mapping into the core table (Figure 4).

5.2.4 Remote operations and method invocations
Remote operations are method calls as well as getfield,
putfield, aload and astore instructions on an object or ar-
ray located at a different node (static fields/methods are all
handled by core 0). Once the object’s location has been de-
termined (using the core-table and the lookup mechanism),
the JVM sends a message to the remote core and blocks
the current thread. When the remote core receives the mes-
sage, it performs the operation and sends a reply back to
the client, which then unblocks the thread and passes on
the result. For method invocations, the remote core has to
spawn a new thread to execute the method, since method
invocations may block and therefore cannot be executed in
the message-handler thread.

5.2.5 Synchronization
The monitorenter/exit instructions are implemented as
messages to the home node of the object they apply to. The
home node stores a queue of nodes that are blocking on a
particular object. Incoming monitorexit messages trigger a
reply to the front element of the queue while monitorenter

messages are added to the end of it. Local threads are added
to the queue as well, but no messages are sent in this case.
This is similar to queue-based locks, such as MCS locks [10].

6. EVALUATION
All experiments were conducted on a 48-core AMD Magny-
Cours (Opteron 6168) NUMA system, running both Linux
and Barrelfish. The system contains four 2×6-core pro-
cessors running at 1.9GHz with each processor accessing
2×8GB of RAM. Each core has a 512KB L2-cache and groups
of six cores share a 6MB L3-cache. The system has 8 NUMA
nodes, each with 8GB of memory. To ensure a low variance
of results on Linux, threads were pinned to cores and mem-
ory affinity was ensured using the numactl tool.

4.5. MULTI-CORE PERFORMANCE 71

0 10 20 30 40 50 60 70

Crypt

FFT

HeapSort

LUFact

Series

SOR

SparseMatmult

8.75

67.29

16.34

9.85

21.08

40.47

14.42

8.55

54.89

16.19

9.74

18.22

43.02

12.85

4.83

27

5.43

3.45

17.89

20.01

6.24

0.28

4.4

0.39

0.13

11.78

1.02

0.77

Execution time in s

OpenJDK (JIT)

OpenJDK (No JIT)

JVM (Linux)

JVM (Barrelfish)

Figure 4.9: Application-benchmarks on a single core (SizeA)

While these results do not represent new findings, they are important for
evaluating the success of the project. They show that the developed JVM
provides the performance necessary to run real-world software, both on Linux
and Barrelfish.

4.5 Multi-core performance

Performance on multiple cores was evaluated using the parallel SparseMatmult
benchmark from the JGF benchmark suite. The benchmark was chosen since
it stresses inter-core communication and does not use Math.sqrt(), which
exhibits di↵erent performance on Barrelfish and Linux (Figure 4.8).

Figure 5: Single-core performance (for the single-
core Java Grande, Section 2A benchmarks)

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

 (
lo

g
 s

c
a
le

)

Number of cores

JGFSparseMatmultBenchSizeB

Barrelfish JVM (Barrelfish, Shared Memory)
Barrelfish JVM (Linux)

OpenJDK (No JIT)
OpenJDK

Figure 6: Multi-core performance (for the parallel
Java Grande JGFSparseMatmultB benchmark)

6.1 JVM Performance
To understand how our JVM performs when compared to an
industry-standard implementation, we compared its perfor-
mance with the HotSpot JVM (OpenJDK 1.6.0) on Linux.
For better comparison, we also ran this JVM with JIT dis-
abled. Our first series of tests only used a single core and
are based on the Java Grande benchmarks [6]. The results
are shown in Figure 5 and show that while the JVM is up to
a factor 2-3x slower than OpenJDK without JIT, this range
remained relatively stable (Series being an exception), in-
dicating that qualitative insights gained from our JVM can
be used to make conclusions about other JVMs as well.

6.2 Shared-Memory Approach
To evaluate the feasibility of the shared-memory approach
on Barrelfish, we measured the parallel sparse matrix multi-
plication Java Grande benchmark with different core counts
on Linux and Barrelfish, as well as OpenJDK (Figure 6).

The results on Barrelfish and Linux scale as expected and
seem almost identical. However, when looking at the speed-
up compared to execution on a single core (Figure 7), it can
be seen that Barrelfish introduces an additional overhead as
the number of cores grows, which is most likely introduced

4.5. MULTI-CORE PERFORMANCE 75

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

S
p
e
e
d
-u

p

Number of cores

JGFSparseMatmultBenchSizeB

Linux
Barrelfish (Shared)

Figure 4.13: Average speed-up of the shared-memory approach

run-time of the experiments (which would have been up to 25h otherwise).
Since the benchmark only measures the execution of the kernel, this gives a
very close approximation for the run-time of JGFSparseMatmultBenchSizeA,
divided by 10. I call this benchmark JGFSparseMatmultBenchSizeA*.

Cores Run-time in s � (Standard deviation)4

1 2.701 0.0017
2 457.893 7.8906
3 395.681 3.5453
4 402.342 7.6161
5 444.382 2.1277
6 514.251 36.769
7 1764.32 247.74
8 2631.27 335.90
16 9333.87 (only executed once)

Table 4.1: Results of JGFSparseMatmultBenchSizeA*

4Since some executions exhibited a high variance, � is given for this experiment.

Figure 7: Shared-memory speed-up

by the OS consistency protocols. Note that the almost ideal
speed-up of our JVM is arguably caused by the large over-
head of the interpreter, which is expected to scale perfectly
as it does not require inter-core communication. The im-
pact of the overhead on Barrelfish might therefore be more
significant for a JVM that uses a JIT compiler.

Nonetheless, these results indicate that the shared-memory
approach works well and could be used as a basis for a JVM
on Barrelfish. However, it would only work on systems that
support shared memory, while systems based on message-
passing need to use the distributed approach.

6.3 Distributed Approach
While we expected the run-times for the distributed JVM to
be longer than for the shared-memory approach, the mea-
surements reveal that the overhead is much larger than ex-
pected. On two cores, the distributed JVM was about 300
times slower than the shared-memory approach. The fol-
lowing run-times are for 1/10th of the iterations from JGF-
SparseMatmultBenchSizeA (compare to Figure 6):

Cores Run-time in s σ (Standard deviation)
1 2.70 0.002
2 458 7.891
3 396 3.545
4 402 7.616
5 444 2.128
6 514 36.77
7 1764 247.7
8 2631 335.9
16 9334 (only executed once)

The results show that, as is, the distributed approach is
orders of magnitude too slow to be feasible, at least for
this benchmark. Measuring the run-time of each individual
thread gives evidence that this is caused by the overhead
of message passing: While the thread running on the home
node of the working set (jvm-node0) completes very quickly,
threads on other cores take orders of magnitude longer (Fig-
ure 8). The diagram also confirms that communication with
cores on other chips (#6 and #7) is significantly more ex-
pensive than on-chip communication.

For this particular benchmark, the distributed JVM has to

76 CHAPTER 4. EVALUATION

The results show that without optimisation, the distributed approach is too
slow to be feasible, at least for this benchmark. Measuring the run-time of
each individual thread gives evidence that this is caused by the overhead of
message passing: While a thread running on the home node of the working
set (jvm-node0) completes very quickly, threads on other cores take orders of
magnitude longer (Figure 4.14). The diagram also confirms that communi-
cation with cores on other chips (#6 and #7) is significantly more expensive
than on-chip communication (Figure 4.3).

400 800 1,200 1,600 2,000 2,400 2,800

#0

#1

#2

#3

#4

#5

#6

#7

0.36

453.24

452.06

453.52

452.58

470.05

2,386.94

2,478.17

Execution time in s

T
h
re

ad
(r

u
n
n
in

g
o
n
j
v
m
-
n
o
d
e
*
)

Figure 4.14: Run-times of individual threads

For this particular benchmark, the distributed JVM has to exchange 7 pairs
of messages for each iteration of the loop in Listing 4.1 (1 getfield, 1 astore,
5 aload), while the shared-memory approach requires almost no inter-core
communication (all arrays reside in the local cache most of the time and
there is little contention, since di↵erent threads write to di↵erent parts of
the output array). There are two basic aspects that add to the overhead of
the message passing:

• Inter-core communication: Each message transfer has to invoke
the cache coherence protocol, causing a delay of up to 150-600 cycles,
depending on the architecture and the number of hops [12].

• Message handling: The client has to yield the interpreter thread,
poll for messages, execute the message handler code and unblock the
interpreter thread. This involves two context switches and a time in-

Figure 8: Run-times of individual threads

exchange 7 pairs of messages for each iteration of the bench-
mark’s kernel, while the shared-memory approach requires
almost no inter-core communication (all arrays reside in the
local cache most of the time and there is little contention,
since different threads write to different parts of the output
array). There are two aspects that add to the overhead of
the message passing:

• Inter-core communication: Each message transfer
has to invoke the cache coherence protocol, causing a
delay of up to 150-600 cycles, depending on the archi-
tecture and the number of hops [3].

• Message handling: The client has to yield the inter-
preter thread, poll for messages, execute the message
handler and unblock the interpreter thread. This in-
volves two context switches and a time interval during
which the core is polling for messages. Running multi-
ple threads on the same core exacerbates this problem.

The fact that the JVM has a lower run-time on three cores
than on two and four cores may indicate that the run-time
on two cores is limited by the latency of inter-core com-
munication and message handling at the client, while the
performance on four cores seems to be limited by the mes-
sage handling on node 0. The high variance for six and more
cores may be introduced by a saturation of the bus through
the cache coherence protocol.

7. DISCUSSION
The results show that a näıve implementation of the dis-
tributed approach is infeasible on the given hardware and
imply that the following steps need to be taken when imple-
menting a JVM on Barrelfish using the distributed approach:

• Reducing the number of messages: This could be
achieved by caching objects and arrays, using a mecha-
nism similar to a directory-based MSI cache coherence
protocol. For example, the number of messages in the
JGFSparseMatmult benchmark could be reduced to al-
most zero, as most of the arrays are read-only and
threads access different ranges of the output array.

• Reducing the latency of messages: Different ap-
proaches could be used to reduce the latency. The
Barrelfish team discusses this topic in the documenta-
tion of the March 2011 release and proposes the use of
inter-processor interrupts (IPI).

8. RELATED WORK

Distributed JVMs.
There has been an extensive amount of publications on run-
ning Java programs distributed across machines: One of the
first solutions was Sun’s own RMI framework, which imple-
mented RPCs directly in Java. Other approaches include
a custom JVM running distributed across multiple servers
(cJVM [2]) and a monolithic JVM running on a distributed
computing platform with distributed shared memory (Kaf-
femik [1]). While this work is very relevant for the Barrelfish
JVM, the trade-offs on a cluster are different to those in a
multi-core machine. For example, message passing is orders
of magnitude cheaper and a lower error-tolerance is required.
The distributed approach chosen by the Barrelfish JVM re-
sembles cJVM while the shared memory version is similar
to a JVM using distributed shared memory.

Java on many-core systems.
There has been research on making Java more effective on
many-core systems. One example is Kilim [13], a lightweight
framework that allows Java threads on a single machine to
communicate via message-passing rather than shared mem-
ory, an approach similar to that of Barrelfish. However, this
system runs within Java on a traditional operating system
while the Barrelfish JVM is effectively running on a dis-
tributed system with unusual characteristics.

JVMs for heterogeneous systems.
Hera-JVM [9] implements a JVM for the heterogeneous Cell
microprocessor, providing a single-system image and trans-
parently migrating threads between cores. Our work differs
in that it uses the underlying operating system to handle
heterogeneity and communication between cores.

9. CONCLUSIONS AND FUTURE WORK
The presented results indicate that more work will be nec-
essary when bringing a production-grade JVM to Barrelfish
using the distributed approach. As discussed previously, a
core improvement could be a fine-grained caching protocol:
Each array is split into chunks of equal size and the array’s
home node stores a set of sharers for each chunk. Cores can
request read access (in which case they will be added to the
set of sharers) or write access (in which case the home node
sends an invalidate message to all sharers before marking the
chunk as modified and returning it to the requester). When
a node tries to access a modified chunk, the chunk’s home
node prompts the holder of the chunk to write it back.

Additional future work may include the following:

• Notifications and IPI: Using Barrelfish’s notifica-
tion features to reduce the latency of messages. Ac-
cording to the Barrelfish documentation, latencies of
4,000 cycles per message could be achievable (instead
of 25,000 cycles in the current version).

• Object relocation The current JVM only relocates
objects when a new thread is created. This could be
changed to make placement decisions at run-time and
move objects between cores.

• Running on the SCC: Running Barrelfish on the
Intel SCC [8] would allow to evaluate whether perfor-
mance improves with message passing in hardware.

We conclude that while it is possible to build a JVM for
a system like Barrelfish, the overhead of message-passing
makes the näıve approach infeasible. However, this overhead
may be reduced by optimisations such as caching.

Acknowledgements: Thanks to Tim Harris for the origi-
nal idea and supporting this project throughout; and to John
Kubiatowicz and the anonymous reviewers for their feedback.

10. REFERENCES
[1] J. Andersson, S. Weber, E. Cecchet, C. Jensen, and

V. Cahill. Kaffemik - A distributed JVM on a single
address space architecture. In Java Virtual Machine
Research and Technology Symposium, 2001.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: A
single system image of a JVM on a cluster. In icpp,
page 4, 1999.

[3] A. Baumann, P. Barham, P. E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A new OS
architecture for scalable multicore systems. In SOSP,
volume 9, pages 29–44, 2009.

[4] A. A. Blackburn, S. Augart, S. M. Blackburn,
M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink,
D. Grove, M. Hind, K. S. Mckinley, M. Mergen,
J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes
Research Virtual Machine project: Building an
open-source research community. IBM Syst. J.,
44:399–417, January 2005.

[5] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek.
Reinventing scheduling for multicore systems. In
HotOS-XII, May 2009.

[6] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A Benchmark Suite for High
Performance Java. Proceedings of the ACM Java
Grande Conference, pages 81—88, 1999.

[7] T. G. Mattson, R. V. der Wijngaart, and M. Frumkin.
Programming the Intel 80-core network-on-a-chip
terascale processor. SC ’08, pages 38:1–38:11,
Piscataway, NJ, USA, 2008. IEEE Press.

[8] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal,
N. Borkar, G. Ruhl, et al. The 48-core SCC processor:
the programmer’s view. In SC’2010, pages 1–11, 2010.

[9] R. McIlroy and J. Sventek. Hera-jvm: a runtime
system for heterogeneous multi-core architectures. In
OOPSLA’10, pages 205–222, 2010.

[10] J. M. Mellor-Crummey and M. L. Scott.
Synchronization without contention. SIGARCH
Comput. Archit. News, 19:269–278, April 1991.

[11] K. Modzelewski, J. Miller, A. Belay, N. Beckmann,
C. Gruenwald, D. Wentzlaff, L. Youseff, and
A. Agarwal. An Operating System for Multicore and
Clouds: Mechanisms and Implementation.

[12] E. B. Nightingale, O. Hodson, R. McIlroy,
C. Hawblitzel, and G. Hunt. Helios: heterogeneous
multiprocessing with satellite kernels. In SOSP, 2009.

[13] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed
actors for Java. ECOOP’08, pages 104–128, 2008.

[14] J. N. Zigman and R. Sankaranarayana. dJVM - A
distributed JVM on a cluster. Technical report,
Australian National University, 2002.

