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ABSTRACT
In recent work published at ACM CCS 2013 [5], we intro-
duced Phantom, a new secure processor that obfuscates its
memory access trace. To an adversary who can observe the
processor’s output pins, all memory access traces are com-
putationally indistinguishable (a property known as oblivi-
ousness). We achieve obliviousness through a cryptographic
construct known as Oblivious RAM or ORAM.

Existing ORAM algorithms introduce a fundamental over-
head by having to access significantly more data per mem-
ory access (i.e. cache miss): this overhead is 100-200× or
more, making ORAM inefficient for real-world workloads.
In Phantom, we exploit the Convey HC-2ex heterogeneous
computing platform – a system consisting of an off-the-shelf
x86 CPU paired with 4 high-end FPGAs and a highly par-
allel memory system – to reduce ORAM access latency.

We present a novel ORAM controller that aggressively ex-
ploits the HC-2ex’s high DRAM bank parallelism to reduce
ORAM access latency and scales well to a large number of
memory channels. Phantom is efficient in both area and
performance: accessing 4KB of data from a 1GB ORAM
takes 26.2us (13.5us until the data is available), a 32× slow-
down over accessing 4KB from regular memory, while SQLite
queries on a population database see 1.2-6× slowdown.

1. INTRODUCTION
Confidentiality of data is a major concern for enterprises

and individuals who wish to offload computation to the
cloud. In particular, cloud operators have physical access
to machines and can observe sensitive information (data
and code) as it moves between a CPU and physical mem-
ory [4, 12]. To protect against such attacks, prior work
has proposed secure processors [9, 10] that automatically
encrypt and integrity-check all data outside the processor,
whether in DRAM or non-volatile storage (this model is now
starting to appear in commercial products such as Intel’s
SGX extensions or IBM’s cryptographic coprocessors).

Although secure processors encrypt memory contents, off-
the-shelf DRAMs require that memory addresses be trans-
mitted over the memory bus in cleartext. An attacker with
physical access can install memory probes to snoop the ad-
dress bus (e.g. through malicious NVDIMMs) to observe
the locations of RAM accessed [4] and in turn learn sensitive
data such as encryption keys or information about user-level
programs [12] and guest VMs in a virtualized server.

Preventing such information leakage requires making mem-
ory address traces indistinguishable, or oblivious. At CCS
2013, we proposed a new hardware architecture for efficient
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Figure 1: The Convey HC-2ex with our Phantom prototype. The
prototype comprises a CPU, non-volatile memory, and an ORAM
controller implemented on one of the FPGAs. All digital signals
outside the FPGA are assumed to be visible to the adversary.

oblivious computation that ensures both data confidentiality
and memory trace obliviousness: an attacker snooping the
memory bus and the DRAM contents cannot learn anything
about the secret program memory – not even the physical
memory locations accessed. We introduced Phantom [5], a
new secure processor that achieves this goal. Phantom is
prototyped on the Convey HC-2ex heterogeneous computing
platform, a system pairing an off-the-shelf x86 CPU with 4
FPGAs and a highly parallel memory system (Figure 1).

Oblivious RAM: We use an algorithmic construct called
Oblivious RAM (ORAM). Intuitively, ORAM techniques
obfuscate memory access patterns through random permu-
tation, reshuffling, and re-encryption of memory contents,
and require varying amounts of trusted memory that the ad-
versary cannot observe. To develop a practical ORAM in
hardware, we adopt Path ORAM [8] – a simple algorithm
with a high degree of memory access parallelism.

Other recent work has also used Path ORAM to propose
a secure processor (ASCEND [2, 6]); this work focussed on
optimizing the Path ORAM algorithm while we focus on the
microarchitecture of a practical oblivious system. As such,
ASCEND is complementary to our work on Phantom.

Challenges: Path ORAM imposes a significant memory
bandwidth overhead – more than 100× over a non-secure
access. Furthermore, Path ORAM’s irregular, data-driven
nature makes it difficult to simply add more memory chan-
nels and build a deterministic yet efficient ORAM controller.
Finally, we do not propose a custom chip but rely on an off-
the-shelf FPGA platform that, on the one hand, can provide
high memory bandwidth but on the other hand restricts us
to use a slow FPGA for the ORAM controller logic (the ratio
of slow logic to high memory bandwidth makes the problem
of scaling to more memory channels even harder).
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Figure 2: The Path ORAM Algorithm, demonstrated on two subsequent accesses. The first is a read of Block A, which the position map
shows must be located somewhere on the path to leaf 101. Reading this path results in blocks B and E also being read into the stash.
Block A is then randomly reassigned to leaf 011, and is therefore moved to the root of the path as it is being written back, since this
is as far as it can now be inserted on the path to 101. Next, block C is read. Since the position map indicates that it is on the path
to leaf bucket 000, that path is read, bringing blocks A, B, D, and F into the Stash as well. C is reassigned to leaf 010 and the bucket
containing D and F is already full, so it can only be in the root of the path being written back. However, A and B must also be in the
root as they cannot be moved any deeper, so C cannot be inserted. It therefore remains in the stash beyond the ORAM access.

Contributions: 1) We introduced an ORAM controller ar-
chitecture that effectively utilizes high-bandwidth DRAM,
even when implemented on slow FPGA logic. 2) We pro-
posed critical improvements (and characterization) of the
Path ORAM algorithm, and a deeply pipelined microarchi-
tecture that utilizes 93% of the maximum DRAM bandwidth
from 8 parallel memory controllers. 3) We built and evalu-
ated Phantom on a Convey HC-2ex (running SQLite work-
loads), and simulated its performance for different cache
sizes. The prototype sustains 38,191 full 4KB ORAM ac-
cesses per second to a 1GB ORAM, which translates to 1.2×
to 6× slowdown for SQLite queries.

To the best of our knowledge, this is the first practical
implementation of an oblivious processor.

2. USAGE & ATTACK MODEL
We consider a scenario where a cloud provider offers a

secure processor, produced by a trusted hardware manufac-
turer, and remote clients can establish an authenticated con-
nection with a loader program on the processor and transfer
an encrypted ORAM image with sensitive data and code to
the processor’s memory. The loader then executes the code
obliviously and stores the results back into ORAM. The re-
mote client can collect the encrypted results once the time
allocated for the computation has elapsed.

We aim to protect against attackers with physical access
to the machine (such as malicious data center employees,
intruders or government-mandated surveillance). Such at-
tackers can snoop DRAM traffic by e.g. installing malicious
DIMMs or probing the memory bus. While existing secure
processors and solutions such as Intel SGX prevent explicit
data leakage with encryption, we prevent implicit informa-
tion leakage through the address bus. Specifically, we pro-
vide the property that“for any two data request sequences of
the same length, their access patterns are computationally
indistinguishable by anyone but the client” (from [7]).

Note that the total execution time (a termination channel)
is out of scope for ORAM. Information leaks through this
channel can be countered by normalizing to the worst case
execution time for a program. Further, the timing of individ-
ual ORAM accesses does not leak information if Phantom
is deployed such that a non-stop stream of DRAM traffic

is maintained. Cache hits inside the CPU or the ORAM
controller would not alter the pattern of DRAM accesses
observable and only reduce the execution time (i.e. timing
channels are reduced to a termination channel).

Our current implementation does not ensure integrity of
data, but the Path ORAM tree can be treated as a Merkle
tree to efficiently provide integrity with freshness [8]. We do
not consider software-level digital attacks, or analog attacks
that exploit the physical side-effects of computation (such
as temperature, EM radiation, or even power draw).

3. THE PATH ORAM ALGORITHM
Path ORAM [8] prevents the information leakage through

memory addresses by reshuffling contents of untrusted mem-
ory after each access, such that accesses to the same location
cannot be linked (while also re-encrypting the accessed con-
tent with a different nonce at every access). We assume the
secure processor has a small amount of trusted (in our case,
on-chip) memory, which the ORAM controller can access
without revealing any information to the attacker. Path
ORAM ensures that all that is visible to an attacker is a
series of random-looking accesses to untrusted memory.

Data is read and written in units called blocks. All data
stored by an ORAM instance is arranged in untrusted mem-
ory as a binary tree, where each node contains space to store
a few blocks (usually four). When a request is made to the
ORAM for a particular block, the controller looks up the
block in a table in trusted memory called the position map.
In the position map, each block is assigned to a particular
leaf node of the tree, and Path ORAM guarantees the in-
variant that each block is resident in one of the nodes along
the path from the root to the block’s designated leaf. Read-
ing this entire path into the stash – a data structure that
stores data blocks in trusted memory – will thus retrieve the
desired block along with other blocks on the same path.

After the requested block is found and its data returned
to the requester (e.g. a CPU), the ORAM controller writes
the same path back to memory. All slots of the tree that do
not contain a block are filled with dummies, which contain
no actual data (and are never put into the stash) but are
encrypted in the same way as blocks so that their ciphertext
is indistinguishable from that of a block.
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At every access, the requested block is reassigned to a
random leaf node and hence may belong to a different path
from that on which it was read (and has to be put into
the upper levels of the tree to not violate the invariant). If
no additional steps were taken, the upper levels of the tree
would thus quickly become full. Path ORAM therefore has
to move blocks in the stash as deep as possible towards the
leaf of the current path – this is called reordering.

Even with reordering, there can be cases where not all
blocks in the stash can be written back (Figure 2). This is
addressed by making the stash larger than a path worth of
blocks. Blocks that cannot be written back remain in the
stash and are carried over into the next ORAM access and
handled the same as if they had been read then.

The obliviousness of Path ORAM stems from the fact that
blocks are reassigned to random leaf nodes every time they
are accessed: repeated accesses to the same block will appear
as accesses to a random sequence of paths through the tree
(each of which consists of a full read followed by a full write
of the same path). This is also the reason the writeback has
to be to the same path: if the path was dependent on the
new leaf of the block, accesses to the block could be linked.

Stash overflows: The stash may overflow (no more blocks
fit into the stash). Path ORAM can recover from overflows
by reading and writing random paths and try to evict blocks
from the stash during those path reads and writes. While
this does not leak information (the random path accesses are
indistinguishable from regular ORAM accesses), it increases
execution time and may hence cause execution to not finish
in the allotted time. It is therefore desirable to size the
stash in such a way that these accesses occur rarely. In [5]
we present an empirical analysis to determine stash sizes
that makes these overflows extremely unlikely.

Access timing: To avoid information leakage through mem-
ory access timing, Path ORAM can perform a non-stop se-
quence of path reads and writes, accessing a random path
if there is no outstanding ORAM request from the CPU.
Stash hits can be hidden by performing a fake path access
as well, and multiple stash hits can be hidden behind the
same access. This is orthogonal to our work (and hence not
implemented) but would be required in a real deployment.

Fundamental Overheads: Path ORAM’s obliviousness
has both space and bandwidth costs. Only 50% of the phys-
ical memory is available as oblivious memory. Furthermore,
as each block access results in an entire path read and write,
Path ORAM’s bandwidth overheads range from 104× for a
13-level ORAM tree (64MB capacity with 4KB blocks) to
192× for a 24-level tree (4GB capacity with 128B blocks).
Hence, the task of building a low-latency ORAM system is
challenging: such a system will have to read two orders of
magnitude more data per memory access.

4. PHANTOM’S ARCHITECTURE
We chose to approach the fundamental overheads of Path

ORAM by targeting platforms that have a very wide mem-
ory system (such as the HC-2ex). By employing a 1,024b-
wide memory system, we can achieve a potential speed-up of
8× over an implementation using a conventional 128b-wide
system. However, exploiting the higher memory bandwidth
is non-trivial: it is necessary to co-optimize the hardware
implementation and the Path ORAM algorithm itself.
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Figure 3: Overview of the ORAM system.

4.1 Achieving High Performance
Memory layout to improve utilization: Simply using
a wide memory bus does not yield maximum DRAM per-
formance: bank conflicts lead to stalls and decrease DRAM
bandwidth utilization. To resolve them, we lay out the Path
ORAM tree in DRAM such that data is striped across mem-
ory banks, ensuring that all DRAM controllers can return
a value almost every cycle following an initial setup phase.
Fully using eight memory controllers now makes the ORAM
controller logic on the FPGA the main bottleneck.

Picking Blocks for Writeback: Bringing 1,024b per cycle
into Phantom raises performance problems: the operation
of the Path ORAM algorithm now has to complete much
faster than it did before, to keep up with memory. While
encryption can be parallelized by using multiple AES units
in counter mode, the Path ORAM algorithm still has to
manage its stash and decide which blocks from the stash to
write back (the reordering step from Section 3).

The latter is of particular importance: The ORAM con-
troller has to find the block that can be placed deepest into
the current path, and do so while processing 1,024b per cy-
cle. One approach would be to scan the entire stash and pick
a block for every position on the path, in parallel with writ-
ing to memory. However, with Convey’s high memory band-
width, scanning through the stash takes longer than writing
out an ORAM block, causing this approach to achieve less
than half the potential performance for a stash size of 128
blocks. Also, to keep the stash small, it is crucial to select
each block from the entire stash [5] – an approach that only
considers e.g. the top blocks of the stash does not suffice.

We hence propose an approach that splits the task of pick-
ing the next block into two phases: a sorting phase that sorts
blocks by how far they can be moved down the current path
(XORing their leaf with the leaf ID of the current path), and
a selection stage that (during bottom-up writeback) looks
at the last block in the sorted list and checks in one cycle
whether it can be written into the current position – if not,
no other block can, and we have to write a dummy.

We further improve on this approach by replacing the sort-
ing and selection stages by a min-heap (sorted by the cur-
rent path’s leaf ID). This replaces an O(C logC) operation
by multiple O(logC) operations (each of which completely
overlaps either with a block arriving from or being written
to memory), where C is the size of the stash. This makes
it now possible to overlap sorting completely with the path
read and selecting with the path write phase.
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Stash Management & Treetop Caching: The stash is a
store for ORAM blocks, but it can also be used to improve
performance by securely caching blocks on-chip. We can
cache the top levels of the ORAM tree in the stash (we call
this treetop caching) which avoids fetching these parts of the
path from DRAM. Since the number of nodes is low at levels
close to the root, this improves performance significantly
while using only modest amounts of trusted memory.

We designed Phantom’s stash management to support
treetop caching with minimal effort (as well as other meth-
ods, such as LRU caching) by using a content-addressable
memory (Xilinx XAPP 1151) that serves as lookup-table for
entries in the stash, but is also used as directory for caching
and as free-list to find empty slots in the stash. Reusing the
stash for caching eliminates copying overheads that we saw
in an early prototype that placed the cache separately.

4.2 Preserving Security
Design principles for obliviousness: We use two simple
design principles to ensure that Phantom’s design does not
break Path ORAM’s obliviousness guarantees. Any opera-
tion – checking the position map, reordering, caching etc. –
that depends on ORAM data is either a) statically fixed to
take the worst-case time or b) is overlapped with another
operation that takes strictly longer. Phantom’s decrypt
operation could, for example, be optimized by not decrypt-
ing dummy ORAM blocks – but this leaks information since
it would cause an operation to finish earlier depending on
whether the last block was a dummy or not. Instead, Phan-
tom pushes dummy blocks through the decryption units just
the same as actual data blocks. These two design principles
yield a completely deterministic Phantom pipeline.

Terminating timing channels at the periphery: The
DRAM interface requires further attention to ensure secu-
rity. Phantom sends path addresses to all DRAM con-
trollers in parallel, but these controllers do not always return
values in sync with each other. Although DRAM stalls do
not compromise obliviousness (DRAM activity is not con-
fidential), propagating these timing variations into Phan-
tom’s design can make timing analysis complicated. We
therefore introduce buffers at the DRAM interface to isolate
the rest of Phantom’s ORAM controller from timing varia-
tions in the memory system. At the same time, all inputs to
the DRAM interface and their timing are public (a leaf ID
and 1,024b of encrypted data per cycle during writeback),
so that no information can be leaked out of Phantom.

4.3 Implementation on the Convey HC-2ex
We prototyped Phantom on a Convey HC-2ex. Creating

a full RTL-implementation (rather than a high-level simu-
lation) was necessary to learn about the details that need

Figure 5: Synthesized design on a Virtex-6 LX760 FPGA.

to be considered in a real Path ORAM controller. Many of
them are not apparent from the high-level description of the
algorithm, such as the importance of how to reorder blocks,
how to organize the stash, how to arrange data in (real)
DRAM, what meta-data needs to be stored with each block
and when to update it (e.g. we found that blocks should
store their own leaf ID to decrease pressure on the position
map, and that it needs to be updated during the read, not
the write phase). Hence, without building a full hardware-
implementation, it is not clear what to simulate (while RTL
simulation took more than 30s per ORAM access).

Phantom is implemented on one of the HC-2ex’s four Xil-
inx Virtex-6 LX760 (Figure 5), but some design points use
up to two more FPGAs to store the position map. It consists
of our custom designed ORAM controller and a single-core
in-order RISC-V [11] CPU developed in our group. The en-
tire project was implemented in Chisel [1], a new hardware
description language developed at UC Berkeley.

Due to constraints in the Convey system, the ORAM con-
troller had to run at 150 Mhz. Since this frequency was too
high for the CPU (which was originally designed for ASICs),
we put it into a second 75 Mhz clock domain available on
the Convey architecture, and use asynchronous FIFOs to
connect it to the ORAM controller. Nonetheless, without
rearchitecting part of the uncore, we are only able to run
with cache sizes of 4KB (IC), 4KB (DC) and 8KB (LLC),
while still overclocking the circuit slightly (synthesis results
differ between design points, but a representative example
has 73/142 Mhz for the respective clock domains). We hence
simulated larger cache sizes to get more realistic numbers.

Running the ORAM controller at this frequency posed a
number of challenges. For example, the position map took
up a large percentage of the FPGAs’ BRAMs, which added
a significant amount of routing pressure (and required us to
pipeline accesses to the position map by 4 levels, as well as
using design partitioning). Many other challenges were on
the microarchitectural level and include the following:

Heap Implementation: For some heap operations, a node
must be compared to both of its children (while also being
written in the same cycle). This potentially doubles the ac-
cess latency to the heap, since each of the FPGA’s BRAMs
has only one read and one write port. It would be possible
to split the heap into two memories (one for even nodes,
the other for odd nodes) so that the two children of a node
are always in different BRAMs and can be accessed in the
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same cycle – this is no more difficult than implementing a
dual-ported memory by duplicating BRAMs, but does not
double the required memory. However, the resulting cir-
cuit still contains paths from one BRAM through multiple
levels of logic to another BRAM, leading to a long critical
path. We therefore split the memory even further: our fi-
nal implementation uses 4 different BRAMs (Figure 4). At
every cycle, we prefetch the four grandchildren of a node so
that the two children we are interested in will be available
in buffer registers at the point when they are required for
comparison, whichever way the previous comparison goes.

Stash Implementation: Each BRAM is limited to 2 ports.
However, BRAMs in Phantom that constitute the stash
have to be multiplexed among four functional units (encryp-
tion, decryption and reads/writes by the secure CPU). We
designed Phantom such that all the units that read from
or write to the stash are carefully scheduled such that only
a single read port and a single write port on the BRAM is
in use at any particular clock cycle.

4.4 Experiences with the Infrastructure
Convey HC-2ex: Convey provides a development kit for
the HC-2ex which includes infrastructure IP and a set of
scripts for the Xilinx design tools that synthesize and pack-
age FPGA images into a personality (a package that is au-
tomatically loaded by the Convey runtime to reprogram the
FPGAs for a particular purpose). Personality-specific logic
is implemented in a Verilog module that interfaces with the
rest of the system (such as the memory controllers) and the
host CPU communicates with personalities through a man-
agement processor (MP) that is connected to the FPGAs
and runs code supplied by the host. It can access shared
registers that are part of each personality and has special
instructions that are directly dispatched to the personality.
The Convey compiler bundles MP code (written in assem-
bly) with the host binary, and host applications can perform
copcalls to run a function on the MP.

Phantom is implemented as a personality and uses these
mechanisms to establish a two-way channel between the host
CPU and the RISC-V core on the FPGA: we provide cop-
calls that access a set of shared registers, which we connect
to the host-target interface of the RISC-V uncore. This al-
lows us to exchange commands with the RISC-V system
(such as accessing control registers or writing to memory).
Furthermore, the uncore’s memory interface is connected to
our ORAM controller, which uses the Convey memory sys-
tem. The RISC-V core itself executes a minimal OS kernel
on top of which we run programs such as SQLite. On the
host, we run a server that is responsible for loading programs
and executing the core’s syscalls for debugging purposes.

We found the HC-2ex to be well-suited for ORAM re-
search due to the simple interfacing of host and FPGA.
Further, the Convey memory system offers many opportuni-
ties for experiments, e.g. with parallel requests or recursive
ORAM. One useful feature would have been to handle cache
misses from the host CPU on the FPGA, since this would en-
able to run the program on the host CPU and send encrypted
memory requests to an ORAM controller on the FPGA (but
there appears to be no fundamental reason this could not
be provided by the hardware). Another interesting (future)
platform for ORAM research may be a hybrid-memory cube
FPGA – this would enable larger position maps.
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Chisel: Chisel is a hardware description language embed-
ded in Scala. While it describes synthesizable circuits di-
rectly (similar to Verilog), it makes the full Scala program-
ming language available for circuit generation (e.g. func-
tional or recursive descriptions of circuits) and has addi-
tional features such as width inference and a type system
for wires, support for structs, high-level descriptions of state
machines and bulk wiring. It compiles to Verilog, which
made it easy to interface with the Convey infrastructure.

Chisel facilitated the implementation of Phantom since
it made it easier to e.g. generate parts of the design auto-
matically based on design parameters and deal with complex
control logic (in particular due to the interlocking in differ-
ent parts of the pipeline). For example, to implement the
heap (Section 4.3), we defined functions that transparently
prefetch the right data from the different memories (hiding
this complexity from the heap implementation).

5. EVALUATION
We experimentally determined the cost of obliviousness on

Phantom and its performance impact on real applications.

ORAM Latency and Bandwidth: We synthesized a
set of different configurations of Phantom, with effective
ORAM storage capacity ranging from 64MB to 4GB (13-19
tree levels with a 4KB block size). Each ORAM configura-
tion includes a stash of 128 elements, for up to 3 levels of
treetop caching. For 18 and 19-level ORAMs, Phantom’s
position map is stored on one and two adjacent FPGAs (re-
quests to them need to be encrypted and padded).

Figure 6 shows the total time per ORAM access for these
configurations. We report the average times per access and
how long it takes until the data is available (for reads), as the
CPU can continue execution as soon as the data is returned
from ORAM. For writes, it can continue immediately.

We measured that Phantom’s latency until ORAM data
is available ranges from 10us for a 13-level (64MB) ORAM to
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Figure 8: Simulated performance of sqlite on a timing model of
our processor. We assume a 1MB L2 cache, 16KB icache, 32KB
dcache and buffering 8 ORAM blocks (32KB).

16 us for a 19-level (4GB) ORAM. Compared to sequentially
reading a 4kB (812ns) or a 128B (592ns) block of data1

using all Convey memory controllers, this represents 12× to
27× overhead. An ORAM access that hits the stash takes
84 cycles (560ns). When considering full ORAM accesses,
latencies range from 19us to 30us. Much of Phantom’s real-
world performance is therefore determined by how much of
the write-back can be overlapped with computation, but is
bounded above by 23× to 50× overhead.

We measured that Phantom utilizes 93% of the theo-
retical DRAM bandwidth (i.e. if each memory controller
returned the maximum number of bits every cycle without
any delays). As Phantom accesses no additional data be-
yond what is required by Path ORAM, this shows that we
come very close to our goal of fully utilizing bandwidth.

FPGA Resource Usage: Figure 7 reports Phantom’s
hardware resource consumption through the number of LUTs
used by the different configurations, as well as the number
of BRAMs used on the FPGA. The design itself uses 30-
52% of memory and about 2% of logic – the other resources
are used by Convey’s interface logic that interacts with the
memory and the x86 core. These results do not include the
resources that would be consumed by real AES crypto hard-
ware. There exist optimized AES processor designs [3] that
meet our bandwidth and frequency requirements while con-
suming about 22K LUTs and no BRAM – our nine required
units would therefore fit onto our FPGA (as the ORAM con-
troller leaves almost 90% of the FPGA’s LUTs available).

Application Performance: We are interested in how the
ORAM latency translates into application slowdowns. As an
end-to-end example, we used our real RISC-V processor to
run several SQLite queries on a 7.5MB census database on
our real hardware. Due to the processor’s extremely small
cache sizes, a very large percentage of memory accesses are
cache misses (we ran the same workloads on an ISA simula-
tor with caching models and found 7.7% dcache misses, and
55.5% LLC miss rate, i.e. LLC misses/LLC accesses – we
hypothesize that many of SQLite’s data structures are too
large to fit into an 8KB cache). As a result, we observed
slow-downs of 6.5× to 14.7× for a set of different SQLite
queries. This experiment shows how crucial caching is to
achieve good performance in the presence of ORAM.

To investigate the effect on applications in the presence
of realistic cache sizes (namely a 16KB icache, 32KB dcache

1Since the granularity of ORAM accesses is much larger
than a cache line, we compare to 128B reads to estimate the
worst-case overhead where only a fraction of data is used.

and 1MB LLC), we ran the same applications on a timing
model derived from our real processor to simulate how our
system would perform with realistic cache sizes. The model
assumes an in-order pipelined RISC-V processor with 1 cy-
cle per instruction, 2 cycles for branch misses, 2 cycles to
access the data cache, 14 cycles to access the LLC, and 89
cycles to access a 128B cache line from DRAM (using our
measurement for the full Convey memory system) and our
access latencies for different ORAM configurations.

We see that a real-world workload, such as SQLite, can
absorb a fair amount of memory access overheads and make
use of our relatively large block size of 4KB. Figure 8 shows
our results for applying our timing model to several queries
on the census database (details can be found in [5]). This
shows that the overheads exposed by Phantom are indeed
reasonable for real-world workloads, especially given the fun-
damental cost of obliviousness is a bandwidth overhead of
greater than 100×. Note that these numbers depend on the
application’s LLC miss-rate and overheads are small because
much of the application’s working set fits in the cache.

6. CONCLUSION
We presented Phantom, a processor with a practical obliv-

ious memory system that achieves high performance by ex-
ploiting memory parallelism on a Convey HC-2ex. As such,
it enables obliviousness on hardware available today.

Acknowledgements: For acknowledgements and funding
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