
Martin Maas

A JVM for the Barrelfish Operating System

Computer Science Tripos, Part II

Queens’ College, University of Cambridge

2010-2011

2

Proforma

Name: Martin Maas
College: Queens’ College
Project Title: A JVM for the Barrelfish Operating System
Examination: Computer Science Tripos, Part II
Year: 2010-2011
Word Count: 11,802
Project Originator: Dr Tim Harris
Supervisor: Dr Ross McIlroy

With the sanction of both my Director of Studies and my Overseers, the
Appendix exceeds the normal length of 15 pages.

Original Aims of the Project: Barrelfish is a research OS developed
at ETH Zurich and MSR. The aim of this project was to create a JVM
for Barrelfish. This includes the implementation and evaluation of a Java
Bytecode interpreter and enabling it to run on the system. Extensions of
the project would explore ways to execute the interpreter on multiple cores,
contrasting a shared-memory approach and a distributed systems approach.

Work Completed: I completed all the work I set out to do, including
the extensions. I implemented a working JVM that supports 198 out of
the 201 Java Bytecode instructions and runs a significant set of real-world
programs (including many benchmarks from the Java Grande Benchmark
suite). The JVM runs on Linux as well as Barrelfish and has been extended
to run parallel applications on both systems. On Barrelfish, it supports both
a shared-memory approach and a distributed approach.

Special Di�culties: The Barrelfish version I was originally using proved to
be unsuitable for the project since it did not work on any hardware available
to me and contained bugs that prevented the distributed JVM from working.
This di�culty was resolved when a new version became available in March
2011. This problem led to delays in the project (such as having to change to
di↵erent APIs), but did not prevent it from being completed successfully.

3

4

Declaration of Originality

I, Martin Maas of Queens’ College, being a candidate for Part II of the
Computer Science Tripos, hereby declare that this dissertation and the work
described in it are my own work, unaided except as may be specified below,
and that the dissertation does not contain material that has already been
used to any substantial extent for a comparable purpose.

Signed Date

5

6

Contents

1 Introduction 13
1.1 Overview . 13
1.2 Background . 14

1.2.1 The many-core revolution 14
1.2.2 The Barrelfish operating system 15

1.3 Motivation . 16
1.4 Project Description . 17
1.5 Related Work . 17

1.5.1 Distributed JVMs . 18
1.5.2 Java on many-core systems 19
1.5.3 JVMs for heterogeneous systems 19

2 Preparation 21
2.1 The Java Virtual Machine . 21

2.1.1 Java Bytecode . 22
2.1.2 Constant pool . 23
2.1.3 Class files . 24
2.1.4 Class library . 24

2.2 The Barrelfish operating system 24
2.2.1 The Multikernel Model 24
2.2.2 Inter-core Communication 26
2.2.3 Shared Memory Support 27
2.2.4 Platforms and Build system 27
2.2.5 Booting Barrelfish and running applications 28

2.3 Requirements Analysis . 29
2.3.1 Required JVM features 29
2.3.2 Further requirements 30
2.3.3 Dependencies . 31

2.4 Development Process . 31
2.4.1 Testing strategy . 32

7

8 CONTENTS

2.4.2 Adaptive approach . 33
2.5 Development Environment . 33

3 Implementation 37
3.1 Overview . 37
3.2 Fundamental Decisions . 38
3.3 Structure . 38
3.4 Implementation Details . 40

3.4.1 Class Loader . 40
3.4.2 Linker . 40
3.4.3 Interpreter . 43
3.4.4 Heap . 46
3.4.5 Class library . 47
3.4.6 String handling . 48
3.4.7 Command line arguments 48
3.4.8 Threads and synchronization 49
3.4.9 Configuration . 50

3.5 Running the JVM on Barrelfish 50
3.6 The Shared-Memory JVM . 52
3.7 The Distributed JVM . 53

3.7.1 Inter-core communication 54
3.7.2 Object relocation . 55
3.7.3 Object lookup . 56
3.7.4 Remote operations and method invocations 56
3.7.5 Static method calls and fields 58
3.7.6 Running threads on di↵erent cores 58
3.7.7 Synchronization . 59

3.8 Additional implementation strategies 60
3.9 Summary . 60

4 Evaluation 61
4.1 Testing for correctness . 61

4.1.1 Conformance and regression testing 61
4.1.2 Unit Testing . 62
4.1.3 Integration Testing . 62
4.1.4 Stress Testing . 63
4.1.5 Summary . 64

4.2 Performance evaluation . 64
4.2.1 Test environment . 64
4.2.2 Challenges . 66
4.2.3 Evaluation Principles 67

CONTENTS 9

4.3 Heap performance . 68
4.4 Single-core performance . 69
4.5 Multi-core performance . 71

4.5.1 Linux . 72
4.5.2 Barrelfish (Shared memory) 74
4.5.3 Barrelfish (Distributed JVM) 74

5 Conclusions 79
5.1 Results . 79

5.1.1 Future Work . 80
5.2 Lessons learned . 81
5.3 Success of the project . 82

A Requirements Analysis 89

B Test Report 91
B.1 Regression and conformance tests 91
B.2 Unit tests . 92
B.3 Integration tests . 92

C Running example 95

D Sample output 97

E Sample code 99

F Profiling results 105

G Class Library 107
G.1 Java Class Library . 107
G.2 Barrelfish JVM Classes . 108

H Project Proposal 109

10 CONTENTS

Acknowledgements

Thanks is owed to everyone who supported me in this project. First and
foremost, I would like to thank my supervisor, Dr Ross McIlroy, for his
guidance and support throughout the entire project. Special thanks also
goes to Dr Tim Harris for supervising the early stages of this project and
supporting it throughout.

I would like to thank Dr Anil Madhavapeddy and Malte Schwarzkopf
for setting me up with access to the test machines at the Systems Research
Group and supporting me in running my experiments.

11

12 CONTENTS

1
Introduction

This chapter describes the Barrelfish operating system and how it fits into the
current research landscape. It explains the motivation to implement a JVM
for this system and reviews related work.

1.1 Overview

Barrelfish [12] is a research operating system for future many-core architec-
tures, developed at Microsoft Research Cambridge and ETH Zurich. This
dissertation describes the implementation of a Java Virtual Machine (JVM)
[32] for Barrelfish, with a particular focus on the design decisions for such a
system.

The work completed encompasses a feature-reduced Java Bytecode inter-
preter for Linux and Barrelfish. It runs several real applications, including
benchmarks from the JGF benchmark suite [23]. The system has been ex-
tended to run across multiple cores on Barrelfish, contrasting a shared mem-
ory approach with a distributed systems approach. The implementation ful-
fils the requirements of the project proposal, including all main extensions.

13

14 CHAPTER 1. INTRODUCTION

1.2 Background

1.2.1 The many-core revolution

The past years have seen tremendous changes in hardware for commodity
computer systems: Core counts are increasing and systems are becoming
more diverse as new types of caches, interconnects and coprocessors (such
as GPUs or programmable network adapters [1]) appear. There is evidence
that these developments put challenges on future operating systems [11, 13].
General-purpose OS’s will not only have to scale for large numbers of cores
but also support an increasing range of di↵erent system configurations, in-
cluding heterogeneous architectures (such as the Cell CPU [44]) and NUMA
architectures (Figure 1.2).

C
h
ip

se
t

x86-64 x86-64

ARM Network Adapter

GPU
Bus

Figure 1.1: A heterogeneous architecture

While there are indicators that traditional operating system designs may
scale well for current hardware even as the number of cores increases [21],
there is a sense that future hardware will require fundamentally new OS
structures. Mattson et al. [35] claim that the cost of cache coherence pro-
tocols prevents scaling to ever larger number of cores and that cores should
instead communicate via message passing (such as the Intel SCC [34] or Bee-
hive [45]). However, current operating systems are not structured to handle
such architectures. Moreover, optimisations to make software scale to large
numbers of cores (such as RCU data structures [37], address ranges [20] and
approaches from HPC) are often hardware-specific and do not generalise well
to a wide range of hardware.

Several OS designs have been proposed to deal with these problems, including
Barrelfish, Corey [20], fos [40], Helios [43] and Tessellation [33]. There is also
work on run-time environments, programming models and compilers, aiming
to make software scale to large numbers of cores and heterogeneous systems.

1.2. BACKGROUND 15

0 1

2 3

54

76

10 11

8 9

1514

1312

M
em

or
y

M
em

or
y

M
em

ory
M

em
ory

4-core processor 4-core processor

4-core processor 4-core processor

10

10

10

10

Figure 1.2: A NUMA architecture

1.2.2 The Barrelfish operating system

Barrelfish is an operating system based on the multikernel model [12], a
design that treats many-core systems as a network of independent nodes
communicating via message-passing (Figure 1.3). By doing so, it can ex-
ploit message-passing hardware while maintaining compatibility with shared
memory architectures. State is replicated rather than shared, and traditional
OS functionality such as memory management, I/O or power management is
implemented as services running on di↵erent OS nodes. Barrelfish also pro-
vides mechanisms to make the OS independent from the underlying hardware
and therefore allows it to run on heterogeneous architectures and adapt to a
wide range of system configurations.

Inter-core communication is made explicit and implemented as a light-weight
message passing library. Threads are provided via a POSIX-like program-
ming model. While Barrelfish provides implementations of libraries such as
libc that hide the distributed nature of the system for certain system calls
(e.g. malloc), the programmer has to be aware of the distributed nature
of the system and adopt an event-based software design for communication
between cores.

16 CHAPTER 1. INTRODUCTION

OS node

State
replica

OS node

State
replica

OS node

State
replica

x86-64 ARM GPU

App App

Messages

Figure 1.3: Overview of the Multikernel Model (adapted from [12])

1.3 Motivation

Operating systems like Barrelfish can profit from higher-level run-time envi-
ronments such as the Java Virtual Machine, since such models have several
advantages over low level languages like C:

• Single-system image: The run-time environment hides the distributed
nature of the system. This allows it to run software that has not ex-
plicitly been developed to run on heterogeneous many-core systems.
McIlroy et al. [36] demonstrated that a JVM is a suitable abstraction
for such systems.

• Transparent migration of threads between cores: Migration of
threads between heterogeneous cores is di�cult in the current model,
since it requires code to be compiled for each instruction set and state
to be translated between the di↵erent architectures. In a JVM, it is
su�cient to provide a run-time environment for each core type, since
code and state of the program are hardware-independent.

• Optimisations: The JVM provides high-level information (such as
class structures) that can be used to optimise the code, e.g. by using
this information for scheduling decisions or adaptive recompilation [10].

• Extensibility: Java can be extended using annotations and language
extensions, which makes it possible to gather additional information

1.4. PROJECT DESCRIPTION 17

from the programmer in order to improve scalability to many-core ar-
chitectures. A project which demonstrates how Java can be extended
for parallel computing is the Titanium project [50].

Some of these advantages also apply to parallel programming models such
as Cilk [17]. However, Java has several advantages over these models: It is a
general-purpose programming language and is widely adopted for both client
and server applications. This is important since Barrelfish targets commodity
systems rather than HPC scenarios. The high adoption also means that there
are stable benchmarks, development tools and libraries available. Compared
to the CLR [38], Java has the advantage of having excellent open source
implementations and being more prevalent in scientific research [16].

For these reasons, it is desirable to investigate the possibility of bringing a
JVM to Barrelfish. It could be used as basis for further research in fields such
as JVM design for many-core systems or many-core scheduling. It could also
be extended to run higher-level frameworks such as Hadoop [48] or CIEL [41]
on Barrelfish.

1.4 Project Description

While the task of bringing a JVM to Barrelfish can be approached from
di↵erent angles, this project focuses on design decisions for such a JVM. It
contrasts a shared-memory approach with a completely distributed approach,
similar to the one used by Barrelfish. This allows investigating design deci-
sions for future hardware, which may only provide message passing instead
of shared memory.

As the limited scope of the project will not allow to create a JVM that
can perform competitively with industry-standard projects, I chose to build
a proof-of-concept prototype that allows the evaluation of design decisions
by taking performance measurements, comparing them to industry-standard
JVMs and estimating performance impacts on current and future hardware.

1.5 Related Work

While the project is related to the work on many-core operating systems,
parallel programming models and language run-times cited in the previous
section, there is some research which is directly relevant for the project.

18 CHAPTER 1. INTRODUCTION

1.5.1 Distributed JVMs

Since 1998, there has been an extensive amount of publications on distributed
JVMs for clusters [2], and projects have chosen di↵erent approaches to run
Java programs distributed across multiple machines: One of the first solu-
tions was Sun’s own RMI framework [26], which implemented RPCs directly
in Java. Other approaches include a custom JVM running distributed across
multiple servers (cJVM [9]) and a monolithic JVM running on a distributed
computing platform with distributed shared memory (Ka↵emik [8]).

While this work is similar to the Barrelfish JVM, the trade-o↵s on a cluster
are very di↵erent to those in a multi-core machine. For example, message
passing is orders of magnitude cheaper and a lower error-tolerance is required.
The distributed approach chosen by the Barrelfish JVM resembles cJVM
while the shared memory version is similar to a JVM using distributed shared
memory. The project draws inspirations from previous work in this field.

JVM

Obj

RMI Proxy

JVM

Obj

RMI Proxy

RMI

JVM

Obj

JVM

Obj
Distributed

JVM JVM

Distributed Shared Memory

Obj Obj

Figure 1.4: Di↵erent approaches to distributed JVMs

1.5. RELATED WORK 19

1.5.2 Java on many-core systems

There has been research on making Java more e↵ective on many-core systems.
One example is Kilim [46], a lightweight framework that allows Java threads
on a single machine to communicate via message-passing rather than shared
memory, an approach similar to that of Barrelfish. However, this system
runs within Java on a traditional operating system while the Barrelfish JVM
is e↵ectively running on a distributed system with unusual characteristics.

1.5.3 JVMs for heterogeneous systems

Hera-JVM [36] implements a JVM for the heterogeneous Cell microproces-
sor, providing a single-system image and transparently migrating threads
between cores. There are also projects that make special-purpose coproces-
sors available from within Java, such as JCUDA [49]. These systems di↵er
from my project in that the Barrelfish JVM uses the underlying operating
system to handle heterogenity and communication between cores.

20 CHAPTER 1. INTRODUCTION

2
Preparation

This chapter gives an introduction to the Java Virtual Machine and Barrelfish
and presents material that had to be understood before any practical work
could commence. It then shows a requirements analysis to determine the
goals of the project and how to achieve them.

2.1 The Java Virtual Machine

The Java Virtual Machine is an abstract model of computation that executes
Java Bytecode, an instruction set resembling intermediate code in a compiler.
It was conceived at Sun in the 1990s and various implementations exist, such
as Sun’s own HotSpot JVM [7] and Jikes [16]. The JVM model is stack-
based, type-aware (enabling introspection), provides garbage-collection and
allows for native function calls. It is based around Java’s class model and its
notion of methods, fields and class instances.

The JVM is specified in “The Java Virtual Machine Specification” [32] and
any JVM will have to adhere to these specifications. Familiarisation with this
material was therefore crucial for the project. While a complete description
of the JVM is beyond the scope of this dissertation, this section describes
some core aspects.

21

22 CHAPTER 2. PREPARATION

Operand

Stack
Locals

Class

Method

PC

Thread Heap

Array Instance

Instance Array

Class

Static Fields

Method

Reference

Bytecode

JV
M

S
ta
ck

Figure 2.1: Overview of the Java Virtual Machine

2.1.1 Java Bytecode

The execution of a Java program is defined by its Bytecode. Each instruction
reads or writes values at the top of an operand stack and results are put
back onto this stack. Each method call has its own operand stack and the
maximum size of this stack is pre-computed by the compiler. Stack entries
are typed and Java provides basic types such as int, double or long.

Method calls require the allocation of a new frame on a thread-local JVM
stack, where each frame contains an operand stack, a set of local variables and
a program counter (PC). At each step of the computation, the instruction at
the PC is executed and updates the state of the machine.

In addition to this local state, the JVM provides a global heap, which is
indexed by references, a special basic type. Heap entries can hold arrays or
class instances and programs can allocate entries on the heap, but not delete
them (this is done by a garbage collector).

2.1. THE JAVA VIRTUAL MACHINE 23

public static int fib(int);
Code:
0: iload_0
1: iconst_1
2: if_icmpgt 7
5: iconst_1
6: ireturn
7: iload_0
8: iconst_1
9: isub
10: invokestatic #2; // Method fib:(I)I
13: iload_0
14: iconst_2
15: isub
16: invokestatic #2; // Method fib:(I)I
19: iadd
20: ireturn

Listing 2.1: A method calculating Fibonacci numbers

2.1.2 Constant pool

Program data such as code, constants and references to other classes, meth-
ods or fields is stored in a constant pool, a per-class list of typed entries. Java
Bytecode instructions such as new, getfield or invokevirtual contain an
index into the constant pool of the current class (the class that defines the
current method) which is then used to, for example, resolve a class reference
or obtain a string constant.

1: Methodref (#2, #3)

2: Class (#4)

3: NameAndType (#5, #6)

4: Utf8 ("ClassA")

5: Utf8 ("method")

6: Utf8 ("(ID)I")

invokestatic #0

int ClassA.method
(int i, double d)

Figure 2.2: Resolving a method reference from the constant pool

24 CHAPTER 2. PREPARATION

2.1.3 Class files

Java programs are represented as .class files. Each class file belongs to
a particular class (including nested or anonymous classes) and defines the
class’s properties, methods, fields and constant pool. Classes are dynamically
loaded and linked at run-time.

2.1.4 Class library

The Java class library is a set of classes that provides a wide range of func-
tionality, including access to certain features of the JVM, such as thread man-
agement or string handling. This is usually implemented via native method
calls.

2.2 The Barrelfish operating system

Barrelfish was introduced in 2009 as a reference implementation of the Mul-
tikernel model [12]. Since then, the team has published several snapshot
releases as open source. While this project was first based on the December
2009 snapshot, I changed to the March 2011 snapshot as soon as it became
available.

In order to conduct the project, I had to gain knowledge about the system.
Unfortunately, Barrelfish is not very well-documented. While research papers
and technical reports gave a high-level overview, many details had to be
extracted from the source code. This section gives an overview of these
findings and material necessary to understand the project.

2.2.1 The Multikernel Model

Barrelfish runs an instance of the OS on each of the system’s cores. Each of
the instances contains the following core components (Figure 2.3):

CPU Driver: This is Barrelfish’s equivalent to a traditional kernel. It
schedules and mediates core access of user-level processes, handles interrupts
and provides local inter-process communication and low-level primitives for
inter-core signalling (e.g. inter-processor interrupts). The CPU driver is
lightweight and abstracts away little, while hiding the underlying hardware

2.2. THE BARRELFISH OPERATING SYSTEM 25

Hardware

Software

User Mode

Kernel Mode

CPU

CPU Driver

Monitor

Dispatcher

CPU

CPU Driver

Monitor

Disp Disp

CPU

CPU Driver

Monitor

Dispatcher

App App
Domain

Figure 2.3: Interactions between Barrelfish’s core components

from the rest of the system. This allows Barrelfish to support heterogeneous
systems, since the CPU driver exposes an ABI that is (mostly) independent
from the underlying architecture of the core.

Monitor: The monitor runs in user-mode and together, the monitors across
all cores coordinate to provide most traditional OS functionality, such as
memory management, spanning domains between cores and managing timers.
Monitors communicate with each other via inter-core communication. Global
OS state (such as memory mappings) is replicated between the monitors and
kept consistent using agreement protocols.

Dispatchers: Each core runs one or more dispatchers. These are user-
level thread schedulers that are up-called by the CPU driver to perform the
scheduling for one particular process. Since processes in Barrelfish can span
multiple cores, they may have multiple dispatchers associated with them, one
per core on which the process is running. Together, these dispatchers form the
“process domain”. Dispatchers are responsible for spawning threads on the
di↵erent cores of a domain, performing user-level scheduling and managing

26 CHAPTER 2. PREPARATION

thread synchronisation (e.g. waking up threads on remote cores). Just like
monitors, they communicate via message passing and replicate per-process
state across the domain’s cores.

In addition to these core components, cores may run drivers (e.g. a network
stack), applications (e.g. a web server) and system services (e.g. a memory
server). Communication between these services works via message passing
as well. In order to allow connecting to a specific service, Barrelfish provides
a global nameservice.

2.2.2 Inter-core Communication

CPU

CPU Driver

Monitor

Application

CPU

CPU Driver

Monitor

ApplicationApplication

URPC

Inter-processor interrupts

Cache-coherence, interrupts

Figure 2.4: Inter-core communication mechanisms (adapted from [12])

The low-level support for inter-core communication is hardware-dependent
and implemented in the CPU driver. On a system that supports message
passing in hardware, Barrelfish will use those capabilities, while on a shared-
memory system, it will use the cache coherence protocol. This works by
using a cache line for communication between two cores, where one core is
writing a message to the cache line and the other core is polling on the cache
line’s last word.

Based on these primitives, the system provides a user-level RPC (URPC)
mechanism that does not require a system call. Together with intra-core
communication, which is handled by the CPU driver, Barrelfish exposes a
common message-passing interface to the user via a library. This interface
provides methods to poll for messages, set up handler methods, connect to
other cores and send messages to them.

2.2. THE BARRELFISH OPERATING SYSTEM 27

// A name and description of the interface

interface hello "A flounder interface" {
// A message from the client to the server

call hello(uint32 number);

// A response from the server to the client

response answer(string text);
};

Listing 2.2: An example Flounder interface

RPC interfaces are defined using Flounder, an interface description language
developed for Barrelfish. The code is compiled into source and header files
that are added to the application. Listing 2.2 gives an example of a Flounder
interface and Figure 2.5 demonstrates how it is used.

Name server

R
P
C

C
li
en
t

R
P
C

S
er
ve
r

Flounder

Handlers

Flounder

Handlers

Poll
Poll

Client

hello(2)

answer("Hi")

blocking lookup() register()

Figure 2.5: Use of a Flounder RPC interfaces for inter-core communication

2.2.3 Shared Memory Support

Spanning a domain between di↵erent cores on a system that provides shared
memory support allows the threads on di↵erent cores to access a shared
virtual address space. This works by replicating a hardware-independent
representation of the page table across the dispatchers on di↵erent cores.
From a user’s perspective, nothing has to be done except for setting up the
domain and running threads on remote cores.

2.2.4 Platforms and Build system

Barrelfish was originally developed for x86-64 systems, but has now been
ported to x86, ARM, SCC [34] and Beehive [45]. Barrelfish uses regular
ELF executables and can therefore be built using the standard x86-64 gcc
compiler.

28 CHAPTER 2. PREPARATION

[build application {
target = "jvm",
cFiles = ["jvm.c", "heap.c", "linker.c", "loader.c"],
addCFlags = ["-DHEAP_MANAGED", "-DSTACK_MANAGED"],
addLibraries = ["timer", "bench", "msun"],
flounderClients = ["jvm"],

flounderServers = ["jvm"]
}]

Listing 2.3: An example Hakefile

Barrelfish uses a custom build system by the name of Hake. It was written
in Haskell and generates a Makefile for Barrelfish using a set of Hakefiles.
These files specify sources, compiler definitions, flounder interfaces and addi-
tional parameters. This makes writing applications for Barrelfish as simple
as writing any C program (subject to using the Barrelfish libraries).

2.2.5 Booting Barrelfish and running applications

timeout 0

title Barrelfish
root (nd)
kernel /x86_64/sbin/elver loglevel =4
module /x86_64/sbin/cpu loglevel =4
module /x86_64/sbin/init

Domains spawned by init
module /x86_64/sbin/mem_serv
module /x86_64/sbin/monitor
...

General user domains
module /x86_64/sbin/jvm core=0 jvm -node0
module /x86_64/sbin/jvm core=1 jvm -node1
module /x86_64/sbin/serial
module /x86_64/sbin/fish

Listing 2.4: A menu.lst file for booting Barrelfish

To boot Barrelfish, all its components have to be specified in a menu.lst file
which is supplied to the GRUB bootloader [19]. Applications are added as
modules. The reason for this is that Barrelfish does not support disk-based
file systems at this point, which means that all data has to be loaded by the
bootloader.

2.3. REQUIREMENTS ANALYSIS 29

Figure 2.6: Barrelfish running within QEMU

2.3 Requirements Analysis

The implementation of a JVM is a complex and open-ended problem and it
was clear from the beginning that it was impossible to implement a fully-
featured JVM. To guide the implementation and evaluation of the project, it
was therefore necessary to conduct a requirements analysis to limit its scope.
This resulted in a set of requirements that captures the core objectives.

2.3.1 Required JVM features

While it would have been possible to select an arbitrary set of Java features
as requirements, a better approach is to determine these features based on
the programs the JVM will have to execute.

Since the main goal of the project is the evaluation of design decisions, the
JVM will have to run programs that enable this evaluation. I therefore
selected two representative benchmarks from the Java Grande Benchmark

30 CHAPTER 2. PREPARATION

Suite [23]. This suite is the standard in Java benchmarking and covers a
wide range of Java features, making it a good choice for this purpose. I
chose the following benchmarks:

• JGFHeapSortBenchSizeA (sequential): A single-threaded bench-
mark that sorts a set of integers using heap sort. This covers most core
JVM features and a subset of the classes from the Java Class Library.

• JGFSparseMatmultBenchSizeA (parallel): A parallel benchmark
that multiplies a compressed representation of a sparse matrix with a
vector. This covers features to run multi-threaded applications.

By manual inspection, I extracted the minimum set of Java features that are
required to execute these benchmarks. The full set of features is given in
Appendix A, while Table 2.1 contains a brief overview. The set of features
mentioned in the project proposal is a subset of this.

Description
J-1 Loading and linking classes (supporting inheritance)
J-2 Executing basic programs (supporting arithmetic, control transfer)
J-3 Static method calls and static field access
J-4 Creating instances (heap), field access and virtual method calls
J-5 Creating and manipulating arrays on the heap
J-6 Supporting native method calls and system features
J-7 String handling (including command line arguments)
J-8 Spawning and joining threads, synchronisation primitives
J-9 Basic classes from the class library (e.g. java.util.HashMap)

Table 2.1: Summary of requirements (full list in Appendix A)

2.3.2 Further requirements

In addition to supporting J-1 to J-9, the JVM will have to run on both Linux
and Barrelfish. This is captured by the following requirements, once again
limiting the scope of the JVM to executing a limited set of programs:

• C-1: The JVM correctly runs a set SC-1 of programs on Linux. Cor-
rectness is defined as “giving the same output as the HotSpot JVM up
to varying values such as time measurements, formatting of numbers,
or small floating-point variations”.

2.4. DEVELOPMENT PROCESS 31

• C-2: The JVM correctly runs a set SC-2 of programs on a single node
on Barrelfish (definition of correctness as before).

Due to the size and complexity of the project, the task of comparing a shared-
memory approach with a distributed approach was considered an extension,
which leads to the following optional requirements:

• E-2: The JVM correctly runs a set SE-1 of programs on multiple Bar-
relfish nodes, using a shared memory approach.

• E-2: The JVM correctly runs a set SE-2 of programs on multiple Bar-
relfish nodes, using a distributed approach where each core runs an
instance of the JVM and no state is shared between these cores.

The sets of programs that are used to capture these requirements includes
the benchmarks from the previous section and a unit testing framework to
facilitate testing on Linux. Table 2.2 shows how these programs relate to the
di↵erent sets of programs above.

SC-1 SC-2 SE-1 SE-2
JGFHeapSortBenchSizeA (sequential) 3 3 5 5
JGFSparseMatmultBenchSizeA (parallel) 3 3 3 3
Unit testing framework (j2meunit) 3 5 5 5

Table 2.2: Overview of required programs

2.3.3 Dependencies

Based on these requirements, it was possible to determine the dependencies
between them. This gave rise to a graph (Figure 2.9) of how these features
depend on each other, which is helpful to guide the implementation.

2.4 Development Process

Since many details and trade-o↵s were unknown at the beginning of the
project, I used an iterative, test-driven development process, inspired by the
spiral model [18]. Features were implemented one at a time, in an order that
is a topological sort of the dependency graph (Figure 2.9). For each feature,
I performed the following steps (Figure 2.7):

32 CHAPTER 2. PREPARATION

• Definition: Writing an initial test to capture the requirements. This
was normally a Java program that made use of the feature.

• Design: Analysing the requirements and developing a design that al-
lows the new feature to fit into the existing structure, applying foresight
to avoid impeding the implementation of later iterations.

• Implementation: Implementing the feature and refactoring existing
code, if necessary.

• Testing: More extensive testing of the feature, including corner cases.
Occasionally, performance measurements were taken to evaluate whether
the performance was su�cient.

Definition

Design

Implementation

Testing

Figure 2.7: The development process

2.4.1 Testing strategy

The goal of testing was to give evidence that the developed JVM fulfils the
requirements presented in the previous section. I employed di↵erent kinds of
tests to ensure the correctness of the JVM:

2.5. DEVELOPMENT ENVIRONMENT 33

• Regression tests: Define goals for the test-driven approach, usually
Java programs that require an unimplemented feature.

• Unit tests: Confirm that the main components of the software fulfil
their contract and work for a range of inputs (black-box and white-box
testing).

• Conformance tests: Check that the JVM correctly runs a range of
Java programs by manual inspection of execution traces and comparing
the output to running the same program on a reference implementation
(OpenJDK [6]).

• Integration tests: A suite of integration tests written in Java, con-
firming the correct execution of complete Java programs. Many of these
tests can be taken from the Java Grande Benchmark suite since most
benchmarks provide validation facilities.

• Stress tests: Run real-world benchmarks (Java Grande) of increasing
size to determine how the JVM copes with high loads.

2.4.2 Adaptive approach

This project represents, to an extend, open-ended research. It was therefore
necessary to adapt to intermediate results and measurements and try out
di↵erent approaches. This dissertation will ignore many experimental parts
that were written during the project, but will hint at them where appropriate.
In the spirit of Barrelfish, the project was guided by learning about design
decisions for JVMs, rather than implementing an end-user system.

2.5 Development Environment

The following development environment was used throughout the project:

• Languages and compilers: The JVM was written in C and Java. On
Barrelfish, it makes use of the Barrelfish tool chain, including Flounder
and Hake.

• Versioning and Backup infrastructure: I used a local git repos-
itory, regularly pushing changes to a git repository on the PWF as
backup.

34 CHAPTER 2. PREPARATION

• Build system: My build system was based on Makefiles. There are
three possible builds of the JVM: “Linux”, “Barrelfish (Shared)” and
“Barrelfish (Distributed)”. Each of the builds collects all necessary
files from the source directories, copies them into a separate directory
structure and runs the platform’s appropriate build tools (e.g. Hake
for Barrelfish).

• Running Barrelfish: I used a local instance of QEMU during most of
the development. Performance measurements were taken on the SRG’s
test machine tigger (a 48-core system).

Coding conventions were adapted from Barrelfish, using Doxygen-style com-
ments for documentation.

Development Machine
(Macbook Pro, Ubuntu 10.10)
gcc 4.4.5, OpenJDK 1.6.0,

Python, awk, bash, gprof,

valgrind, CUnit, CMock,

QEMU, gnuplot, LaTeX,

pgf/TikZ, pgfplots

git repository

PWF

git repository

push (ssh)

UCS Backup

slogin-serv9

tigger

Debian

Barrelfish

ssh

ssh/serial console

cl.cam.ac.uk

Figure 2.8: Development environment

2.5. DEVELOPMENT ENVIRONMENT 35

Loading classes Linking classes

Static fields
Static

method calls

Native
method calls

Executing
basic programs

on Linux
Heap

Instances

Arrays Virtual
method calls

Field Access

Basic class
library

Executing
complex
programs

(Java Grande
Benchmarks)
on Linux

String handling Threading

Run on
Barrelfish
(Shared
Memory)

Run Java
Grande

Benchmarks
on Barrelfish

(Shared
Memory)

Run on
Barrelfish

(Distributed)

Run Java
Grande

Benchmarks
on Barrelfish
(Distributed)

Evaluation

Run on
Barrelfish

(Single core)

Complexity

Small

Medium

Large

Figure 2.9: Dependency Graph

36 CHAPTER 2. PREPARATION

3
Implementation

This chapter describes the implementation details of the Barrelfish JVM and
explains major design decisions, performance trade-o↵s and optimisations.

3.1 Overview

The requirements introduced in the previous chapter represent a minimum
set of Java features that had to be implemented. The Barrelfish JVM sup-
ports more than this, including the main extensions. I have also filled some
additional gaps to allow the execution of a wider range of programs. The
result is a Java Bytecode interpreter that supports 198 of the 201 Java Byte-
code instructions (the missing instructions are wide, goto_w and jsr_w).

In addition to the features from the project proposal, the JVM supports
inheritance, strings, all basic types (including long, float and double) and
arrays (both one-dimensional and multi-dimensional). The features that are
unsupported include exception handling (athrow will only produce a stack
trace and exit), garbage collection, most of the class library and validation
(which includes type checking at run-time). In accordance with the project
proposal, linking and class loading are static rather than dynamic.

The JVM runs on Linux and Barrelfish, both on single and multiple cores.

37

38 CHAPTER 3. IMPLEMENTATION

For Barrelfish, both the shared memory approach and the distributed ap-
proach have been implemented. The Barrelfish JVM runs successfully within
QEMU [15] and on real hardware.

3.2 Fundamental Decisions

A fundamental decision for the project was whether to implement a new
JVM or bring up an existing system on Barrelfish (e.g. the Jikes RVM [16]).
After discussing these options with my supervisors, we decided on the first
option, since Barrelfish’s support for OS features required by Jikes (such as
sophisticated memory management) is incomplete or experimental. The risk
associated with this was deemed too high for the nature of this project.

A second major decision was whether to build a Java Bytecode interpreter
or a JIT compiler. As the focus of the project was on design rather than
performance, the benefits of a JIT compiler would have been limited, while
increasing the complexity of the project and distracting from the task of
making the JVM distributed on Barrelfish. Furthermore, JIT would be more
di�cult to port to di↵erent architectures, which is a disadvantage given that
one of the core ideas of Barrelfish and the JVM is to run on heterogeneous
systems. I therefore decided to implement an interpreter instead.

3.3 Structure

Figure 3.1 gives an informal, high-level overview of the JVM on Linux. This
design does not include extensions to run the JVM on Barrelfish and only
shows the main components. In the following sections, I will present the
implementation of each part and make the design more precise.

The core component of the JVM is the interpreter, which executes the main
loop and manages a per-thread JVM stack. It accesses the global heap and
uses separate modules for class and array handling. The interpreter requests
classes and class data from the linker, which populates and manages the
method area (the part of the JVM that stores class information and code).
The linker uses a class loader to read class data from disk or memory. A
module for native method invocations allows the interpreter to call methods
defined in C (using Java’s native keyword). These methods provide access to
System functionality such as the system clock or the console. Features related

3.3. STRUCTURE 39

Main loop JVM
Stack

Native
calls

Static
hooks

Interpreter

Threads

Loader

Class Library

User Classes

Classes
Methods

...

Linker

Static
variables

Heap

Class
handling

Array
handling

String
handling

Thread
management

Synchronisation
Command
line utility
(launcher)

represents data

Figure 3.1: High-level design of the JVM (compare to Figure 2.1)

to threading and synchronisation are implemented in a separate module,
which di↵ers between platforms.

Most of the project was written in C, since this was the only language sup-
ported by Barrelfish when the project was started. As this prevented an
object-oriented software design, a module-based approach was chosen to de-
couple the di↵erent components, provide a clear structure and facilitate test-
ing. Some components have di↵erent implementations (e.g. for di↵erent
platforms), which can be selected using pre-processor macros.

40 CHAPTER 3. IMPLEMENTATION

3.4 Implementation Details

This section outlines the implementation of the system’s main components.
The testing strategy from Section 2.4.1 was kept in mind throughout the
project and all modules were designed with cohesion in mind, in order to
facilitate unit testing and mocking. A set of regression tests (Java programs)
was used to test each new feature. Testing is jointly covered in Section 4.1.

3.4.1 Class Loader

A di↵erence between the Barrelfish JVM and real-world JVMs is the fact
that class loading is static rather than dynamic. Most systems load classes
dynamically from a range of di↵erent sources (e.g. the file system or network)
using a hierarchy of class loaders implemented in Java itself. A dynamic linker
will then request unknown classes from these class loaders. In the Barrelfish
JVM, all classes are available on start-up (due to the lack of a file system).
The class loader approach would therefore be unnecessarily complex and
hence, a static approach has been used, where all classes are loaded during
the initialisation phase of the JVM. However, this could easily be extended
to the approach described above.

The loader reads class data from memory and translates it into an internal
representation shown in Figure 3.2. It uses an approach similar to recursive
decent parsing, using a set of mutually recursive functions to read data of
a certain type and emit the appropriate structure. The loader skips most
attributes, except for a set of special annotations supported by the JVM and
the Code attribute, which contains the bytecode associated with a method.

While the class loader does not modify any data, it provides helper functions
to extract data from the constant pool, such as methods or fields of a certain
name and type. Appendix C presents a running example for the class loader.

3.4.2 Linker

The linker transforms the output of the class loader into the form that is used
at run-time. It replaces references to classes, fields and methods by pointers
to their actual representations, thereby translating the constant pool into a
run-time constant pool (Figure 3.3). The linker also determines the memory
layout of class instances. An example is given in Appendix C.

3.4. IMPLEMENTATION DETAILS 41

����������	
��
��������	�
�����
�������
��������	�
�����
�������
����	

�����
��
�������
����
����

��
�������
�

�	�����

��
�������
����	����	
��
��������
���	��
��������	���������
��	����
�������	�����������
�������
�	
������������
�	�������
����
������������������������

�����	
���	
��
����	

�����
��
�������
����	����	���
�������
��	
�����������	���
�������
�������
�	
������������
�	�������

��������	���
�	
��
�������
�	����	����	���
�������
�������
�	��	������
�������
����������	��

�����
�����	
��
����	

�����
��
�������
����	����	���
�������
��	
�����������	���
�������
�������
�	
������������
�	�������

�������	
��
������
������

������	
��
����	����	���
�������

���	
��	
��
�
���������	���
�������

�����	
��
�
� 	��
���!"��
����������	��

���

� #

�

#
�

#

�

#

�
#

�

#

Figure 3.2: Class loader representation of the data (UML class diagram)

Classes are processed lazily. When a class is requested by the interpreter,
the linker checks whether this class has already been linked and otherwise
performs the following steps:

• Transform data: Information such as names, access flags or type
descriptors are copied from the class loader representation. All textual
descriptors are extracted from the constant pool and directly stored as
strings. The linker also performs basic processing such as determining
a method’s number of arguments by parsing its type descriptor.

• Resolve references: The linker iterates over the constant pool and
replaces reference entries such as Class, MethodRef and FieldRef by
pointers to the referred objects. If a required class has not been linked
before, this is done recursively. The linker also has to consider inheri-
tance, recursively looking up fields and methods in the parent if they
cannot be found in the class itself.

42 CHAPTER 3. IMPLEMENTATION

���������
����������	
�����
������
����	�������
�����������
���	���
�������	����
��	
����
������	
�����
�����
��
�����
���������	�
����
���
�����	
����
���

��
�
�����
�����	
����
���

��
�
�����
�
���
	��

����	
���
���	������	
�����
������
��	������������
�����������
���	���
��	
����
 �

����	��������
����
���

���
�����	!
����
���

������
���
��	
�������	
�����
������
��	
����
��	
�����
������
��	������������
�����������
����	��������
����
���

������
����
 �

���!��
��"
����
���

���!�������
����
���

����	��	��
�
����
#$�

����	
���
	��

����������
��
�
��
����
 �

��������	
������
�����������

�
�
��
���
	�������
����
#$�

	
������	
���	��������
�����������
���	������	!
����
���

���

�

�

�

�

�

�

����
��
����
�������
��	
�����������
���
�
���
	��

�

�

�

�

Figure 3.3: The method area (UML class diagram)

• Calculate field o↵sets: Once all field references have been resolved,
the memory layout of the class instances is computed. The parent’s
fields are laid out first in memory, followed by the fields of the class itself
(Figure 3.4). This allows a subclass to be treated as any of its ancestors.
The calculation of static fields is simpler, since no inheritance has to
be taken into account.

• Run static initialiser: Java classes may provide a static initializer1

that is executed when the class is first loaded. These initializers are
executed by invoking the interpreter on a method called “<clinit>”.

Since multiple threads may access the linker concurrently, it is protected by
a coarse-grained lock. For performance reasons, the evaluated version of the
Barrelfish JVM links all classes on start-up, to eliminate linking time from
the measurements.

1These blocks are defined by static {...}.

3.4. IMPLEMENTATION DETAILS 43

A.a A.b B.a B.c C.d

0 4 8 12 16 24

o↵set (bytes)

A

C

B

data_size = 24

This represents the data compo-

nent of the jvm_instance structure.

A

int a
int b

B

int a
int c

C

long d

Figure 3.4: Memory Layout of a class instance

calculate_field_offsets(class):
offset := 0;
if (class ->parent)

offset := calculate_field_offsets(class ->parent);

for each non -static field f in class ->fields
f->offset := offset;
offset += sizeof(f); // 4 for int , 8 for long , etc.

return offset; // = data_size

Listing 3.1: Algorithm for calculating field o↵sets

3.4.3 Interpreter

The interpreter is the core of the JVM and performs most of the execution.
It is based around a main loop performing the following steps:

• fetching the opcode at the program counter (PC)

• fetching any operands (instructions are variable-length)

• executing the opcode and updating the state

This is implemented as a large switch statement (almost 2,000 loc). Since
much of it is uninteresting, this section will focus on some specific aspects.

44 CHAPTER 3. IMPLEMENTATION

...

Operand

Stack
Locals

Class

Method

PC

Method call: PUSH
Return: POP

MAIN
LOOP

!

Heap

Class handling

Method
lookup Create

Array handling

StoreLoad Create

Native method calls ...

Static hooks ...

Figure 3.5: Structure of the interpreter

State

The interpreter manages a per-thread JVM stack where each stack frame
contains an operand stack, local variables, the program counter and pointers
to the current class and method (Section 2.1). All long and double values
take up two stack entries or local variables and have to be treated accordingly.

Simple instructions

Many instructions (e.g. iadd, ifeq, i2f) only manipulate the operand stack
and local variables. In this case, the interpreter simply executes the oper-
ation, e.g. takes two integers o↵ the stack, adds them and puts the result
back onto the stack. Some instructions also require updating the program
counter or manipulating the JVM stack.

3.4. IMPLEMENTATION DETAILS 45

Method calls

At a method call, the interpreter looks up the method in the run-time con-
stant pool and generates a new stack frame. It then copies the arguments
from the caller’s operand stack to the callee’s local variables, sets the callee’s
PC to the start of the method’s bytecode and pushes the frame onto the
JVM stack.

If the callee is an instance method, the method’s first parameter is a refer-
ence to the corresponding object. For virtual method calls (invokevirtual,
invokeinterface), the interpeter has to look up the correct method using
the type of the instance. The algorithm is given in the JVM specification [32]
and first considers the class itself before recursively searching its ancestors.
This step is skipped for static methods (invokestatic) and constructors or
private methods (invokespecial).

When the callee returns (i.e. reaches an instruction such as ireturn), the
top-most value from the stack is copied onto the caller’s stack, the callee’s
stack frame is removed and execution continues at the PC of the caller.

Native method calls

Java supports native method calls via the native keyword. The JVM han-
dles them by using a static dispatcher that looks up the methods class, name
and signature, takes the arguments from the stack and calls the correspond-
ing native implementation. This is used to implement many features of
the JVM, such as threading (java.lang.Thread) or fast copying of arrays
(java.lang.System.arraycopy()).

Static hooks

While native methods allow Java code to call into C code, the Barrelfish
JVM also allows C code to run static Java methods, which I call a static
hook. Amongst other uses, this is important to generate Java objects such
as strings: While the JVM provides facilities to generate Java arrays within
C, objects can only be generated in Java, since it has to be ensured that
the constructor is executed correctly and that the memory layout remains
correct in the presence of changes.

46 CHAPTER 3. IMPLEMENTATION

3.4.4 Heap

Java’s heap manages a global memory store that maps 32-bit reference values
to run-time representations of class instances and arrays. The heap also has
to perform bookkeeping in order to allow for tasks such as garbage collection
or object relocation in a distributed JVM. Abstractly, it exposes the interface
presented in Listing 3.2.

ref heap_put_instance(instance)
instance heap_get_instance(reference)

reference heap_put_array(array)
array heap_get_array(reference)

// Distributed JVM only:
heap_set(reference , pointer)
heap_unset(reference)

// Managed heap only:
pointer heap_alloc_instance ()
pointer heap_alloc_array ()

Listing 3.2: Heap interface

The heap is a central data structure that is accessed by many instructions
and multiple threads may access it concurrently. As shown in the evaluation,
this can account for a large proportion of the JVM’s run-time and should
therefore, by Amdahl’s Law, be subject to optimisation. In fact, many JVMs
use sophisticated heap implementations to improve performance [5].

In order to investigate how this influences my results, I compared di↵erent
implementations:

• Naive Hashmap: This is a simple hash-map implementation that uses
open-addressing with linear probing [25, p. 239]. It maps references
to pointers and doubles its size once it is 75% full. All operations are
protected by a table-wide lock. While this approach is very ine�cient,
it is simple and makes good use of memory.

• Array: This implementation uses an array of pointers. Reference val-
ues are indices into the array and the size is doubled as soon as it is
full. All operations are non-blocking, including resizing. While this
is not a realistic implementation (no memory is ever freed), it is used
to emulate an e�cient heap implementations that maps references to
pointers using a non-blocking data structure.

3.4. IMPLEMENTATION DETAILS 47

• Managed heap: This implementation emulates a heap where refer-
ences are pointers into memory. The approach consists of pre-allocating
a large block of memory and storing arrays and objects within this
memory, rather than pointers to them. As with the previous approach,
my implementation is not realistic, since it does not re-use memory.

Key/Val Key/Val Key/Val (resize)

collisionhash

jvm array jvm instance

Data Data

reference: key

Figure 3.6: Naive hashmap implementation

Pointer Pointer Pointer (resize)

reference: index into array

jvm array jvm instance

Data Data

Figure 3.7: Array implementation

jvm array jvm instance jvm array ... (fixed size)

Data Data

reference: o↵set

Figure 3.8: Managed heap implementation

3.4.5 Class library

The Barrelfish JVM implements a subset of classes and methods from the
Java Class Library, such as java.lang.System, java.util.Hashmap and

48 CHAPTER 3. IMPLEMENTATION

java.util.Vector. The full list can be found in Appendix G. The imple-
mentations adhere to the specifications given by the o�cial Java documen-
tation [4] and often call native methods to implement functionality. Bar-
relfish also implements a set of additional classes in the org.barrelfish.jvm
namespace.

3.4.6 String handling

Java represents strings by the java.lang.String class. My implementation
of this class uses an internal byte[] array that holds the string’s data, one
byte per character (UTF8 characters over 0xFF are not supported). Multiple
strings may refer to the same byte array, so that calls to e.g. substring()
do not copy any character data but create a new String that refers to the
same array with a di↵erent o↵set and length.

String constants (which can be loaded from the constant pool using the
ldc instruction) are handled by passing the constant pool entry’s byte ar-
ray to org.barrelfish.jvm.StringManager.fromStringConstant() using
a static hook (Section 3.4.3). The method then creates a new String object
and returns the reference to the interpreter.

I also support the java.lang.StringBuilder class, which is used to ex-
ecute commands such as System.println("Integer i (" + i + ")"). It
makes use of java.lang.System.arraycopy() to quickly copy data between
strings. Conversion of numbers is handled by native calls to sprintf and
scanf in org.barrelfish.jvm.ValueConverter.

Output is handled by org.barrelfish.jvm.ConsoleOutputStream, which
is used by System.out (an instance of java.io.PrintStream) to write char-
acters to the console.

3.4.7 Command line arguments

Command line arguments are handled similarly to string constants: A static
hook is used to convert each argument to a String object and the references
are stored in an array that is then passed to the main(String[] args)
method.

3.4. IMPLEMENTATION DETAILS 49

������
������������	

���������
��
���������
��
�����������
��

����
�������������	
�
����
�������������	
��������
����������
���
����������������������������
�������������
��
���� ������������	

�����������
��
�������
������
�!���"�
������!���"�
��������
��
�#�������
�
��������
��
�#�������������������
��

�����������	�
����$���
���������������������	
������
��

������
���
	�
�����������	

��
%���
��

����
�� �
�������&��
���
���
����
�� �
������������
���
��&&����
�
���
��&&�����������
��&&�����������
���
���������&��
���$
�
$�$��&��
���
���
�����������
��
������
���������
��

���	�	�
�&����!��������
�����
��
������
���
�
��������
��

����
�&����'���������
���������
������
���������������
��

����	����	��	�
�
��(����
���
�
��������
��
�����(����
���������������
��
����
��(�!������
�������
��

���������	
�������
������������������������������
����������	�����������
�������
	����������������������

����	�
������)�
�������$

��������&����������������)���
���������������
���������������)���
����������
���

��������	��
�&�
���
�
���
�&�
����������
�&�
����������
���
�&�
������
�&�
�����
�
���
�&�
������������
�&�
������������
���

�����������	
��������
��������
�*�
���������	
�
�*�
���������	
�����
�������
���
�*�
�����
���

������	���������	��
��������
�*�
���������	
�
�*�
���������	
�����
�������
���
�*�
�����
���

����	����������	��
+��������&�������$

��������
��������
�*�
���������	
�
�*�
���������	
�����
�������
���
�*�
�����
���

,

,

,

,

�����������

�����������

�����������

Figure 3.9: String handling in the Barrelfish JVM

3.4.8 Threads and synchronization

On Linux, the JVM implements java.lang.Thread and maps all functions
to the corresponding pthread primitives (Table 3.1). Each thread invokes the
interpreter, which creates a new JVM stack and executes the run() method

50 CHAPTER 3. IMPLEMENTATION

of the Thread object that called it.

Barrelfish JVM pthreads
java.lang.Thread.start() pthread_create()
java.lang.Thread.join() pthread_join()
monitorenter pthread_mutex_lock
monitorexit pthread_mutex_unlock()

Table 3.1: Mappings to pthread functions

For the synchronization instructions monitorenter and monitorexit (which
correspond to synchronized(obj) {...} blocks in Java), the JVM main-
tains a map from heap references to pthread mutexes which are locked on
monitorenter and released on monitorexit.

3.4.9 Configuration

The Barrelfish JVM includes a configuration file which contains information
about the types of threads to use, the available number of processor cores
and the amount of heap/stack memory to use. The configuration is accessed
via native methods in org.barrelfish.jvm.Configuration.

3.5 Running the JVM on Barrelfish

Modifying the JVM to support execution on Barrelfish was facilitated by the
fact that Barrelfish supports both libc and a POSIX-like threading model.
This meant that only minor modifications were required:

Modifying the code: The libraries used by Barelfish are slightly di↵erent
from the ones used on Linux. This caused minor changes in order to compile
the code for Barrelfish, such as using a di↵erent threading API and including
additional header files. See Appendix E for a code sample.

Providing a service: To run the JVM on Barrelfish, it had to be turned
into a service. The JVM executable was extended to set up a JVM service
and register it with the nameserver, implementing the basic flounder interface
shown in Listing 3.3. The server is launched on startup by an entry in the
menu.lst file. When called from the Barrelfish shell (fish), the JVM creates
a connection to a specified server, requesting the execution of a certain class
with certain command line arguments (Figure 3.10).

3.5. RUNNING THE JVM ON BARRELFISH 51

interface jvm "Barrelfish JVM" {
call execute(string class_name , string args);

}

Listing 3.3: Basic flounder interface for the single-core JVM

Loading classes into the JVM: The Barrelfish version I have been working
with for most of the project did not support a file system. This made it
necessary to find a di↵erent way to load class files in Barrelfish. My solution
consists of a Python script (packager.py) that takes a set of class files and
writes them as byte arrays into a C source file. This file is then compiled and
linked into the JVM executable, allowing the JVM to access the class data.

Figure 3.10: The JVM running on Barrelfish

After completing these tasks, it was possible to run the Barrelfish JVM on
a single core on Barrelfish and execute Java programs. This provided the
foundation for investigating design decisions in making the JVM run across
multiple cores, the main extension of the project.

52 CHAPTER 3. IMPLEMENTATION

3.6 The Shared-Memory JVM

The first approach to support execution across multiple cores on Barrelfish
uses shared memory, similar to the approach on a traditional operating sys-
tem. As explained in Section 2.2.3, Barrelfish supports this by spanning a
domain across multiple dispatchers.

JVM
run func on

obj A obj B obj C obj DHeap

Domain

Figure 3.11: Overview of the shared approach

The JVM is first launched on a single core. It then spans a domain to di↵erent
cores, using a Barrelfish API that enables it to spawn a new dispatcher on a
di↵erent core and set up a connection between the two. Once this has been
done, the JVM can create threads on the remote core, similar to creating
local pthreads (Figure 3.11).

One of the main di↵erences to Linux is that this solution requires the JVM
to explicitly choose which core to run a thread on. I therefore implemented a
DomainThread class which implements java.lang.Runnable and takes the
core to run on as a parameter. The java.lang.Thread class then creates
instances of DomainThread and assigns them, on creation, to di↵erent cores
in a round-robin manner.

3.7. THE DISTRIBUTED JVM 53

Another di↵erence to Linux is the use of spinlocks as synchronisation primi-
tives, since mutexes did not work across multiple cores in the earlier version
of Barrelfish. While I provided my own, experimental implementation of this
feature, I eventually decided to use spinlocks as they gave significantly better
performance.

3.7 The Distributed JVM

The second approach for running the Barrelfish JVM on multiple cores is
significantly more complex. It avoids the need for shared memory by running
an instance of the JVM on every core and communicating solely via message
passing (Figure 3.12).

I use an approach inspired by the dJVM [51] project. Each object has an
associated home node where it resides. When a core performs an operation
on an object, it sends a message to the object’s home node, which executes
the operation and returns an acknowledgement once it is finished.

JVM0 JVM1

JVM2 JVM3

move object

move object ack

invokereturn

putfield

putfield ack

obj A obj B obj C obj D

Figure 3.12: Overview of the distributed approach

54 CHAPTER 3. IMPLEMENTATION

To implement this approach, the JVM server was extended to support addi-
tional messages and functionality. Multiple server instances are launched on
startup, each on a di↵erent core and with a unique identifier (e.g. jvm-node0).
Each of these servers provides and manages its own set of components, in-
cluding a loader, linker and heap. The policy for choosing home nodes is
simple: An object’s home node is the node that executed the new instruction
that created it.

3.7.1 Inter-core communication

All JVM nodes are completely independent. In order to communicate with
each other, they have to set up point-to-point connections between cores.
These connections (or bindings, as they are called in Barrelfish) are created
on demand and have an associated shared bu↵er to transfer bulk data (in a
message-passing system, this would correspond to a message bu↵er). Since
bindings are not thread-safe, they have to be protected by locks.

client server

remote getfield(x)

return result

getfield(x, lr ptr)

getfield response

(result, lr ptr)

lock result
lock

result

blocks

message handler:

unblock, copy result

into lock result

Figure 3.13: Typical communication between two nodes

The bindings are managed by a client module which keeps track of existing
connections and sends asynchronous messages to other JVM nodes. A server
module implements handlers for these messages, which may send replies back

3.7. THE DISTRIBUTED JVM 55

to the client. This means that each JVM node acts as both server and client.
Each binding only covers one direction, i.e. bi-directional communication
requires two connections.

Each node runs a message-handler thread that never blocks. This thread
handles incoming messages and spawns new threads as necessary (e.g. at a
method call). All other threads may block at any time. For this purpose, they
have a semaphore associated with them that blocks while e.g. waiting for a
reply from another node. The reply handler then unblocks the thread and
potentially stores a return value in a structure called a lock-result (consisting
of the mentioned semaphore and a 64-bit value). To identify the thread that
needs to be unblocked, a pointer to the lock-result is sent with each message
and returned with the reply (Figure 3.13).

3.7.2 Object relocation

Moving objects between cores is essential to the distributed approach. While
my JVM only relocates objects during the creation of a new thread, it could
be extended to relocate objects during the program’s execution, similar to
O2 scheduling [22].

Relocation is initiated by an object’s home node. By default, only the object
itself is moved. However, it is possible to annotate fields with a custom
@Sticky annotation which instructs the JVM to recursively relocate any
objects and arrays stored at that field as well.

Node #0
(Source)

object core

20 1

Node #1
(Destination)

object core

move object

move object ack

Bu↵er20 20

remove and copy copy and add
Heap Heap

Figure 3.14: Object relocation

56 CHAPTER 3. IMPLEMENTATION

For each relocated object or array, the JVM sends a move_object message
to the destination node, storing the data in the connections bu↵er. The
destination node extracts the data, adds it to its local heap and replies with
an acknowledgement (Figure 3.14).

It is important to note that heap references do not change when their entry is
moved to a di↵erent node. This gives rise to the problem of keeping references
unique across multiple nodes. I solved this problem by setting the first 8 bit
of each reference to the id of the node that issued it. This ensures global
uniqueness, as each core can provide uniqueness for its own references.

Once the transfer has finished, the source node removes the objects from
its local heap and adds an entry to a core table containing a mapping from
references to core ids. This table represents the core’s knowledge about the
locations of di↵erent heap entries.

3.7.3 Object lookup

When a node tries to access an object whose location is unknown to it, the
node needs to perform a lookup to determine the object’s home node. There
are two basic approaches to this problem: a central directory of all object-
location mappings or a broadcasting approach similar to the ARP protocol
in computer networking [31, pp. 497↵.]. I decided on the latter, to keep the
JVM decentralised and avoid bottlenecks.

Whenever the interpreter tries to access an object, it first checks the local
heap. If the object cannot be found on the heap, it tries to look it up in
the core table. If the core table does not contain the object either, the node
broadcasts an obj_request_bcast message to all other nodes and blocks
the current thread. When a core receives such a request, it checks its local
heap for the object in question and, if the object can be found, replies to the
sender. Upon receipt of the reply, the core unblocks the thread and enters
the new object-location mapping into the core table (Figure 3.15).

3.7.4 Remote operations and method invocations

Remote operations are getfield, putfield, aload and astore instructions
on an object or array located at a di↵erent node. They follow the scheme
outlined in Section 3.7.1. Once the object’s location has been determined
(using the core-table and the lookup mechanism from Section 3.7.3), the JVM

3.7. THE DISTRIBUTED JVM 57

jvm-node0 jvm-node1 jvm-node2 jvm-node3

⇥
obj request bcast

obj request bcast

⇥
obj request bcast

obj request responseO
b
je
ct

lo
ok

u
p

blocks

Figure 3.15: Object lookup

sends a message to the remote core (Table 3.2) and blocks the current thread.
When the remote core receives the message, it performs the operation and
sends a reply back to the client, which then unblocks the thread and passes
on the result (Figure 3.16).

Method invocations to remote objects are similar to this. However, the re-
mote core has to spawn a new thread to execute the method, since method
invocations may block and therefore cannot be executed in the message-
handler thread. Method parameters are transmitted using the connection
bu↵er and return values are sent in an appropriate reply message, depending
on the type of the return value.

Operation Message Reply
method call invoke_noparams invoke_return

invoke_allparams invoke_return32
invoke_return64

getfield getfield getfield_response
putfield putfield putfield_ack
aload aload aload_response
astore astore astore_ack

Table 3.2: Messages for remote operations

58 CHAPTER 3. IMPLEMENTATION

jvm-node0 jvm-node1 jvm-node2 jvm-node3

invoke virtual

getfield

getfield response

invoke returnM
et
h
od

ca
ll

Figure 3.16: Remote operations

3.7.5 Static method calls and fields

Static methods and fields are special cases since they are not associated with
any particular instance. While it would be possible to handle them like ob-
jects, assigning a home node to each class, I chose a simpler approach and
stored all static data on core 0. Static method calls and getstatic/putstatic
requests are handled by the same messages as their non-static counter-parts,
with the object parameter set to 0.

However, it is not always desirable to execute static methods on a remote
core, since it results in a significant overhead for stateless classes such as
java.lang.Math. I therefore introduced a @CoreLocal annotation which
instructs the JVM to treat the corresponding class as local. The downside
of this approach is that the resulting behaviour may deviate form the JVM
specification, so special care is required when using the annotation.

3.7.6 Running threads on di↵erent cores

Like the shared memory approach, the distributed JVM represents threads
by a DistributedThread class that takes the identifier of the JVM node it is
running on. The distributed threads are instantiated from java.lang.Thread
using the same round-robin approach used in the shared memory JVM. When
calling DistributedThread.start(), the object uses a native call to relo-
cate itself to the desired JVM node. It is then launched via a remote method
call to the new home node, which sets up a local thread, calls start() on it
and returns (Listing 3.4).

3.7. THE DISTRIBUTED JVM 59

package org.barrelfish.jvm;

@CoreLocal
public class DistributedThread implements Runnable {

private native static int connectToService(byte[] service);
private native static void moveThread(Object obj ,

int connectionId);

@Sticky private String jvmService;
private int connectionId = -1;
@Sticky private LocalThread thread;

public DistributedThread(String jvmService) {
this.jvmService = jvmService;

}

protected void runThread () {
thread = new LocalThread () {

public void run() {
DistributedThread.this.run ();

}
};

thread.start ();
}

public void start() {
if (connectionId < 0)

connectionId = connectToService(jvmService.getBytes ());

moveThread(this , connectionId);
runThread ();

}

public void join() {
thread.join ();

}
}

Listing 3.4: Threads in the distributed JVM (simplified)

3.7.7 Synchronization

The instructions monitorenter and monitorexit are implemented as mes-
sages to the home node of the object they apply to. For monitorenter, the
node delays its reply until the thread has been admitted, while monitorexit
returns immediately.

The implemented approach is similar to the one presented in Section 3.4.8.
However, instead of blocking on a mutex, the node stores a queue of nodes
that are blocking on a particular object. Incoming monitorexit messages
trigger a reply to the front element of the queue while monitorenter mes-

60 CHAPTER 3. IMPLEMENTATION

sages are added to the end of it. This approach is required as the node cannot
block threads directly, since they are potentially running on di↵erent cores.
Local threads are added to the queue as well, but no messages are sent in
this case. This is similar to queue-based locks, such as MCS locks [39].

A B C D

monitorenter #5

monitorenter #5

monitorenter response

monitorenter #5

monitorexit #5

monitorenter reply

monitorexit reply

5Heap

C B

maps to
Queue

State at that point in time

Figure 3.17: Remote synchronization

3.8 Additional implementation strategies

In addition to testing (Section 4.1), I used assertions to confirm the correct-
ness of intermediate states and reduce the probability for errors. To identify
bottlenecks and potential errors in the JVM, I performed a profiling analysis
using gprof [27] (Appendix F). The results gave evidence that the JVM
spends most of its time in the interpreter loop and that no other component
unexpectedly dominates the run-time. I also used valgrind [42] to confirm
that the JVM does not exhibit memory leaks or undefined value errors when
running a representative set of programs (Java Grande).

3.9 Summary

This chapter presented the implementation of the JVM and showed that it
includes all features captured by requirements J-1 to J-9.

4
Evaluation

This chapter presents the evaluation that was performed to analyse the per-
formance trade-o↵s of the JVM. It summarises the results of testing the JVM,
followed by an evaluation of its performance on Linux and Barrelfish, both
on a single core and multiple cores.

4.1 Testing for correctness

In order to confirm that the implemented JVM works correctly and fulfils
the requirements, I employed the testing methodology outlined in Section
2.4.1. This ensured that any performance evaluation was conducted using
a correct JVM implementation. While testing is deeply integrated into the
development process, I summarise it in this section for clarity. The full list
of tests is given in Appendix B.

4.1.1 Conformance and regression testing

Before implementing each feature, a regression test was written. These are
simple Java programs that make use of the feature in question. After com-
pleting the implementation, the program was run in the JVM to verify that its

61

62 CHAPTER 4. EVALUATION

output is correct and execution traces match the JVM specification (confor-
mance). The tests were repeated between iterations, to ensure that features
did not break during subsequent changes (regression).

4.1.2 Unit Testing

Unit tests were written to perform blackbox and whitebox testing on in-
dividual components of the JVM, such as the loader, linker and heap (the
interpreter is covered by regression, conformance and integration tests). The
tests were implemented using CUnit [30], a unit testing framework for C.
Unused components were replaced by mocks using the CMock [47] mocking
framework, which I adapted to interact correctly with CUnit.

4.1.3 Integration Testing

These tests confirm that the JVM as a whole works correctly, including
all of its components and their interactions. I used two di↵erent kinds of
integration tests.

Java Grande Benchmark Suite

I used the benchmarks from the JGF Benchmark suite to test the JVM on a
set of real, complex programs. Each of the benchmarks validates the results
of its computation, making them good candidates for integration tests.

The JVM correctly executes most of the sequential section1 and section2
benchmarks, including heap sort (heapsort), the IDEA encryption algorithm
(crypt), calculating Fourier coe�cients (series) and sparse matrix multi-
plication (sparsematmult). This covers JGFHeapSortBenchSizeA from the
requirements analysis (Section 2.3).

The JVM also runs the raytracer benchmark from section3 and produces
a pixel-accurate rendering of the expected result (Figure 4.1). This is a good
indicator for correctness, since this represents a long and complex execution
that stresses most features of the JVM and class library.

Furthermore, the parallel JGF benchmark suite was used to confirm the
correctness of the JVM for parallel execution of programs. Benchmarks were
primarily executed on Linux, but most of them were checked on Barrelfish
as well. In particular, JGFSparseMatmultBenchSizeA was correctly executed

4.1. TESTING FOR CORRECTNESS 63

Figure 4.1: Output of the Ray Tracer on the Barrelfish JVM

on all variants of the JVM, adding to the fulfilment of requirements C-1, C-2,
E-1 and E-2 from the requirements analysis.

Java tests

In addition to the JGF benchmarks, I implemented a second set of integration
tests directly in Java. Since the Barrelfish JVM does not support reflection,
traditional unit testing frameworks such as JUnit [14] could not be used.
I chose j2meunit [3] instead, a variant of JUnit that avoids reflection but
otherwise supports most of its features. The tests implemented under this
framework cover various aspects of the JVM and the interpreter, as well as
my implementation of the class library. Furthermore, the correct execution
of the framework adds to the fulfilment of requirement C-1.

4.1.4 Stress Testing

Due to their large size and complexity, the JGF benchmarks could be reused
as stress tests. For example, JGFRayTracerBenchSizeA allocated more than
100MB of heap memory and ran for more than 200s. Through these tests,
it was determined that the JVM fails for large workloads when it runs out
of heap memory, stack memory or pre-allocated items such as threads and
locks. By choosing these sizes appropriately, the JVM could theoretically be

64 CHAPTER 4. EVALUATION

adapted to support arbitrary workloads. However, a practical limit appears
to be reached for JGFRayTracerBenchSizeB, since the JVM could not allo-
cate su�cient continuous memory (more than 200MB) on my development
machine.

4.1.5 Summary

The tests demonstrate that the JVM can execute a wide range of complex
real-world programs and fulfils requirements C-1, C-2, E-1 and E-2. The full
Test Report can be found in Appendix B.

4.2 Performance evaluation

The purpose of the performance evaluation was to determine the impact of
the implemented design decisions and compare the di↵erent approaches.

4.2.1 Test environment

The project proposal mentioned QEMU [15] as primary environment for
benchmarks and testing. During the project, it became clear that this was
not feasible. The run-time and variance exhibited by running software on
QEMU is too large to give conclusive results, particularly when simulating
a many-core environment (e.g. JGFHeapSortBenchSizeA exhibited a single-
core run-time of more than 10 minutes, compared to less than 15 seconds on
the host’s real hardware).

It was therefore necessary to run the benchmarks on real hardware. The test
machines of the Computer Labs Systems Research Group (SRG) were used
for this purpose. While the 2009 snapshot of Barrelfish did not work on any of
the machines, I was able to run the March 2011 version on the “tigger” test
machine, after a minor modification to Barrelfish’s hardware configuration
component. This machine was used throughout the entire evaluation.

Tigger is a 48-core AMD Magny-Cours [24] (Opteron 6168) system. It con-
tains four 2⇥6-core processors running at 1.9GHz with each processor ac-
cessing 2⇥8GB of RAM. Each core has a 512KB L2-cache and groups of six
cores share a 6MB L3-cache. Tigger is a NUMA system and has 8 NUMA
nodes, each with 8GB of memory (Figures 4.2, 4.3).

4.2. PERFORMANCE EVALUATION 65

M
e
m
o
ry

C
o
n
tr
o
ll
e
r

H
T

L
in

k
H
T

L
in

k

H
T

L
in

k
H
T

L
in

k

H
T

L
in

k
H
T

L
in

k

H
T

L
in

k
H
T

L
in

k

L3 Cache L3 Cache

Core 0

L2 Cache

Core 1

L2 Cache

Core 2

L2 Cache

Core 3

L2 Cache

Core 4

L2 Cache

Core 5

L2 Cache

M
e
m
o
ry

C
o
n
tr
o
ll
e
r

Core 6

L2 Cache

Core 7

L2 Cache

Core 8

L2 Cache

Core 9

L2 Cache

Core 10

L2 Cache

Core 11

L2 Cache

8GB RAM 8GB RAM

Node 0 (N0) Node 1 (N1)

Figure 4.2: A single Magny-Cours chip (based on [24])

N0 ! N5 is a two-hop connection

N0 N1 N2 N3

N4 N5 N6 N7

10

16

16
16

22

16

16

16

16

Figure 4.3: Topology of tigger (distances based on numactl)

66 CHAPTER 4. EVALUATION

4.2.2 Challenges

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
 t
im

e
 in

 s

Number of cores

JGFSparseMatmultBenchSizeA

JVM on Linux

Figure 4.4: High variance in preliminary results

Preliminary test-runs of the JVM on Linux gave a very high variance (Figure
4.4), making it impossible to extract meaningful results. I took the following
steps to address these problems:

• Pinning threads to cores: It had to be ensured that each thread is
executed at the same core during each run of the benchmark. This was
achieved using the Linux pthreads API1.

• Memory a�nity: Similarly, it had to be ensured that memory is
always allocated on the same NUMA node. This was achieved using
the numactl [29] command line tool.

• Stack allocation: It turned out that the high variance was partly
related to how the JVM stacks were managed: New stack frames were
allocated from the heap and Linux always assigned consecutive regions
in memory on the same NUMA node. A possible explanation is that

1Barrelfish pins threads by default.

4.2. PERFORMANCE EVALUATION 67

this led to stack frames of di↵erent threads (on di↵erent cores) overlap-
ping in the same cache line, as the size of the allocated regions is often
smaller than the size of a cache line (128 bytes). This would imply
that the variance was caused by the cache coherence protocol. Storing
the JVM stacks in a consecutive block of memory on the core-local call
stacks solved the problem.

These issues were detected through extensive micro-benchmarking and ex-
perimenting with di↵erent ways of managing memory in the JVM. After
performing the changes, the variance was significantly reduced (Figure 4.5).

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
 t
im

e
 in

 s

Number of cores

JGFSparseMatmultBenchSizeA

JVM on Linux (using numactl)

Figure 4.5: Preliminary results after the changes

4.2.3 Evaluation Principles

Measurements were repeated three times and the arithmetic mean was taken.
This number was chosen to filter out minor distortions, while the variance was
found to be su�ciently small to justify this approach (Figure 4.5). Error bars
are shown where appropriate (Figures 4.10 and 4.12 omit them since they

68 CHAPTER 4. EVALUATION

were smaller than the markers2). On Barrelfish, the system was rebooted
after every benchmark, since Barrelfish’s resource management is not very
reliable and there was a risk that this could distort the results.

On Linux, bash scripts were used to automate the test runs. For Barrelfish,
an expect script was used to communicate with the test machine over a
serial console. The Linux kernel used was 2.6.32-5.

All benchmarks used the managed heap approach (this choice is discussed
in Section 4.3). The JVM was compiled on gcc 4.4.5 using the -O2 and
-DNDEBUG compiler flags (disabling assertions). The JVM was configured to
use 20MB of heap memory per core and 100KB of stack memory per thread.

4.3 Heap performance

Before starting the main evaluation, I compared the performance of the dif-
ferent heap implementations introduced in Section 3.4.4.

1 Core 2 Cores 8 Cores 32 Cores
0

100

200

300

400

500

600

700

64

294 286

173

51.3

158

661

28
13.9 3.48 0.88

28.3
14.2

3.43 0.89

E
xe
cu
ti
on

ti
m
e
in

s

Naive (Lock) Naive (Spinlock) Array Managed

1571

Figure 4.6: Heap benchmarking results (JGFSparseMatmultBenchSizeA)

All tests were performed on Linux, since the relative results are platform-
independent, up to the cost of di↵erent types of locks. To evaluate the heap

2All ranges were  0.981s and only 4 of 171 measurements had a range > 0.17s.

4.4. SINGLE-CORE PERFORMANCE 69

performance, a heap-intense benchmark was used. The sparse matrix multi-
plication benchmark was well-suited for this, since its computation stresses
reading and writing to arrays stored on the heap (Appendix F).

The results, presented in Figure 4.6, indicate that a blocking heap implemen-
tation is unsuitable, since the overhead of locking (single-core performance)
and contention (multi-core performance) dominates the run-time. Based on
these results, the managed heap approach was chosen for all further bench-
marks.

An interesting result is the fact that the additional level of indirection that
the array approach adds over the managed heap does not lead to a change
in run-times. This can be seen as an indicator that the heap overhead is
negligible to the rest of the run-time, as long as there is no contention.

4.4 Single-core performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·108

Method:S:SyncInst

Assign:S:Array:Loc

Loop:For

Arith:Add:Int

Arith:Div:Double

3.34 · 106

1.39 · 107

2.2 · 107

2.94 · 107

2.44 · 107

3.03 · 106

1.38 · 107

2.38 · 107

3.13 · 107

2.34 · 107

1.18 · 107

2.61 · 107

5.59 · 107

9.31 · 107

4.46 · 107

3 · 107

9.49 · 107

Operations per s

OpenJDK (JIT)
OpenJDK (No JIT)

JVM (Linux)
JVM (Barrelfish)

1.08 · 109

+Inf

1.66 · 109

Figure 4.7: Selected micro-benchmarks on a single core

70 CHAPTER 4. EVALUATION

0 1 2 3 4 5 6 7 8

·107

SqrtDouble

SinDouble

CosDouble

TanDouble

2.15 · 106

4.27 · 106

4.23 · 106

4.05 · 106

5.5 · 106

4.75 · 106

4.67 · 106

4.72 · 106

4.41 · 107

1.39 · 107

1.55 · 107

1.26 · 107

7.61 · 107

1.72 · 107

3.01 · 107

1.6 · 107

Operations per s

OpenJDK (JIT)
OpenJDK (No JIT)

JVM (Linux)
JVM (Barrelfish)

Figure 4.8: java.lang.Math operations on a single core

To evaluate the performance on a single core, I used a set of benchmarks from
the Java Grande benchmark suite. I compared single-threaded run-times
of the Barrelfish JVM on Linux and Barrelfish to the OpenJDK runtime
environment (version 1.6.0) with and without JIT compilation (using the
-Djava.compiler=NONE switch)

These results allow for the following conclusions:

• The Barrelfish JVM is slower than OpenJDK without JIT by a factor
of 2-3 (except for some micro-benchmarks). I consider this a success,
since the Barrelfish JVM is not optimised and was not designed with
performance in mind. The fact that JIT compilation leads to results
that are faster by an order of magnitude is unsurprising.

• The performance of the Barrelfish JVM on Linux and on Barrelfish is
similar (except for FFT, which uses a large amount of floating point
math3). This is an important result since it allows a connection to be
drawn between results on the two platforms. It also shows that running
the system on Barrelfish does not give a significant penalty for single-
core performance, which is important when arguing whether Barrelfish
should be used as a platform.

3This discrepancy may be due to Barrelfish using a di↵erent native math library.

4.5. MULTI-CORE PERFORMANCE 71

0 10 20 30 40 50 60 70

Crypt

FFT

HeapSort

LUFact

Series

SOR

SparseMatmult

8.75

67.29

16.34

9.85

21.08

40.47

14.42

8.55

54.89

16.19

9.74

18.22

43.02

12.85

4.83

27

5.43

3.45

17.89

20.01

6.24

0.28

4.4

0.39

0.13

11.78

1.02

0.77

Execution time in s

OpenJDK (JIT)
OpenJDK (No JIT)

JVM (Linux)
JVM (Barrelfish)

Figure 4.9: Application-benchmarks on a single core (SizeA)

While these results do not represent new findings, they are important for
evaluating the success of the project. They show that the developed JVM
provides the performance necessary to run real-world software, both on Linux
and Barrelfish.

4.5 Multi-core performance

Performance on multiple cores was evaluated using the parallel SparseMatmult
benchmark from the JGF benchmark suite. The benchmark was chosen since
it stresses inter-core communication and does not use Math.sqrt(), which
exhibits di↵erent performance on Barrelfish and Linux (Figure 4.8).

72 CHAPTER 4. EVALUATION

The sparse matrix multiplication benchmark measures the execution time of
a program that multiplies the compressed representation of a sparse matrix
with a vector. It reads from four arrays and all threads write to di↵erent
ranges of the output array, avoiding contention (Listing 4.1).

public void run() {
for (int reps =0; reps <NUM_ITERATIONS; reps ++) {

for (int i=lowsum[id]; i<highsum[id]; i++) {
SparseMatmult.yt[row[i]] += x[col[i]] * val[i];

}
}

}

Listing 4.1: Kernel of the JGFSparseMatmultBenchSizeA Benchmark

4.5.1 Linux

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
 t
im

e
 in

 s

Number of cores

JGFSparseMatmultBenchSizeB

OpenJDK
OpenJDK (No JIT)

Barrelfish JVM

Figure 4.10: Performance on Linux

I first compared the performance of the Barrelfish JVM and OpenJDK on
Linux. The results are similar to the results for the single-threaded bench-
mark in that the performance is within a factor of 2-4. The benchmarks also

4.5. MULTI-CORE PERFORMANCE 73

demonstrate that the Barrelfish JVM scales very well to multiple cores on
Linux, maintaining almost linear speed-up. Here, speed-up is defined as:

speed-up(n) =
t0
tn

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

S
p
e
e
d
-u

p

Number of cores

JGFSparseMatmultBenchSizeB

OpenJDK
OpenJDK (No JIT)

Barrelfish JVM

Figure 4.11: Average speed-up on Linux

While this implies that the Barrelfish JVM scales almost perfectly, these
numbers have to be taken with a grain of salt: t0 is 26 times higher for the
Barrelfish JVM than it is for OpenJDK with JIT and 4 times higher than
for OpenJDK without JIT. The overhead of the JVM is arguably caused
by the interpreter loop (Section 3.4.3, Appendix F), which is independent
between cores and therefore scales linearly. It is conceivable that the run-
time of OpenJDK is dominated by other components that do not scale so
well. Nonetheless, the fact that the JVM scales perfectly demonstrates that
the multi-core implementation works as expected.

With the Linux results as baseline, I investigated the JVM’s performance on
Barrelfish. I ran experiments for each of the two approaches and compared
the results to the JVM on Linux.

74 CHAPTER 4. EVALUATION

4.5.2 Barrelfish (Shared memory)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
 t
im

e
 in

 s

Number of cores

JGFSparseMatmultBenchSizeB

Linux
Barrelfish (Shared)

Figure 4.12: Performance of the Shared-memory approach

Figure 4.12 shows that the performance of the shared-memory approach on
Barrelfish is similar to the performance on Linux. This demonstrates that
the overhead caused by Barrelfishs inter-dispatcher communication does not
prevent the JVM from scaling to 48 cores. However, Figure 4.13 reveals that
an overhead exists, which could become significant in a more e�cient JVM
implementation.

4.5.3 Barrelfish (Distributed JVM)

While it was expected that the run-times for the distributed JVM would
be longer than for the shared-memory approach, the measurements reveal
that the overhead factor is much larger than expected. On two cores, the
distributed JVM was about 300 times slower than the shared-memory JVM.

For these experiments, I modified JGFSparseMatmultBenchSizeA to reduce
the total number of iterations by a factor of 10. This was done to reduce the

4.5. MULTI-CORE PERFORMANCE 75

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

S
p
e
e
d
-u

p

Number of cores

JGFSparseMatmultBenchSizeB

Linux
Barrelfish (Shared)

Figure 4.13: Average speed-up of the shared-memory approach

run-time of the experiments (which would have been up to 25h otherwise).
Since the benchmark only measures the execution of the kernel, this gives a
very close approximation for the run-time of JGFSparseMatmultBenchSizeA,
divided by 10. I call this benchmark JGFSparseMatmultBenchSizeA*.

Cores Run-time in s � (Standard deviation)4

1 2.701 0.0017
2 457.893 7.8906
3 395.681 3.5453
4 402.342 7.6161
5 444.382 2.1277
6 514.251 36.769
7 1764.32 247.74
8 2631.27 335.90
16 9333.87 (only executed once)

Table 4.1: Results of JGFSparseMatmultBenchSizeA*

4Since some executions exhibited a high variance, � is given for this experiment.

76 CHAPTER 4. EVALUATION

The results show that without optimisation, the distributed approach is too
slow to be feasible, at least for this benchmark. Measuring the run-time of
each individual thread gives evidence that this is caused by the overhead of
message passing: While a thread running on the home node of the working
set (jvm-node0) completes very quickly, threads on other cores take orders of
magnitude longer (Figure 4.14). The diagram also confirms that communi-
cation with cores on other chips (#6 and #7) is significantly more expensive
than on-chip communication (Figure 4.3).

400 800 1,200 1,600 2,000 2,400 2,800

#0

#1

#2

#3

#4

#5

#6

#7

0.36

453.24

452.06

453.52

452.58

470.05

2,386.94

2,478.17

Execution time in s

T
h
re
ad

(r
u
n
n
in
g
on

j
v
m
-
n
o
d
e
*
)

Figure 4.14: Run-times of individual threads

For this particular benchmark, the distributed JVM has to exchange 7 pairs
of messages for each iteration of the loop in Listing 4.1 (1 getfield, 1 astore,
5 aload), while the shared-memory approach requires almost no inter-core
communication (all arrays reside in the local cache most of the time and
there is little contention, since di↵erent threads write to di↵erent parts of
the output array). There are two basic aspects that add to the overhead of
the message passing:

• Inter-core communication: Each message transfer has to invoke
the cache coherence protocol, causing a delay of up to 150-600 cycles,
depending on the architecture and the number of hops [12].

• Message handling: The client has to yield the interpreter thread,
poll for messages, execute the message handler code and unblock the
interpreter thread. This involves two context switches and a time in-

4.5. MULTI-CORE PERFORMANCE 77

terval during which the core is polling for messages. Running multiple
threads on the same core exacerbates this problem.

The fact that the JVM has a lower run-time on three cores than on two
and four cores may indicate that the run-time on two cores is limited by the
latency of inter-core communication and message handling at the client, while
the performance on four cores seems to be limited by the message handling
on node 0. The high variance for six and more cores is most likely introduced
by a saturation of the bus through the cache coherence protocol (similar to
what was seen in Section 4.2.2).

Summary

The findings of these experiments are meaningful results, since every JVM
that uses the naive distributed approach presented in this dissertation will
su↵er from this problem. However, this does not imply that the distributed
approach in general is unsuitable. If it is possible to reduce the latency of
message passing or reduce the number of messages sent between two cores, it
may well be possible to improve the performance. The strongest conclusion
that can be drawn at this point is therefore that the implemented, unop-
timised distributed approach performs poorly on the given cache-coherent
NUMA system.

78 CHAPTER 4. EVALUATION

5
Conclusions

This chapter draws conclusions from the results, summarises the outcome of
the project and presents future work.

5.1 Results

All core requirements were achieved: The JVM supports features J-1 to J-9
and runs all real-world programs specified in the requirements (C-1, C-2),
both on Linux and Barrelfish. It was successfully extended to run across
multiple cores on Barrelfish, contrasting a shared memory and a distributed
approach (E-1, E-2). In addition to the goals and extensions from the project
proposal, the JVM supports additional Java features and programs, hence
exceeding the requirements.

It was shown that the developed JVM is su�ciently performant and correct to
execute significant real-world Java programs, and scales well to large numbers
of cores using shared memory on both Linux and Barrelfish. At the same
time, it was determined that the distributed approach performs too poorly
to be considered feasible on the given hardware. The overhead introduced
by message-passing has been identified as the limiting factor.

79

80 CHAPTER 5. CONCLUSIONS

It is conceivable that these problems can be alleviated by introducing addi-
tional optimisations to reduce this overhead. Broadly, these optimisations
fall into two categories:

• Reducing the number of messages: This could be achieved by
caching classes and arrays. For example, the number of messages in the
JGFSparseMatmultBenchSizeA benchmark could be reduced to almost
zero by this, as most of the arrays are read-only and threads access
di↵erent ranges of the output array.

• Reducing the latency of messages: Di↵erent approaches could be
used to reduce the latency. The Barrelfish team discusses this topic in
the documentation of the March 2011 release and proposes the use of
inter-processor interrupts (IPI). Another aspect that could reduce the
latency of message passing is the use of platforms that support message
passing in hardware.

I addressed the first point by starting the implementation of an array-caching
mechanism similar to a directory-based MSI cache coherence protocol [28, pp.
232]. At the time of writing, this feature is still incomplete.

Each array is split into chunks of equal size and the array’s home node stores
a set of sharers for each chunk. Cores can request read access (in which case
they will be added to the set of sharers) or write access (in which case the
home node sends an invalidate message to all sharers before marking the
chunk as modified and returning it to the requester). When a node tries to
access a modified chunk, the chunk’s home node prompts the holder of the
chunk to write it back.

5.1.1 Future Work

Future work will focus on making the distributed approach more e�cient by
exploring some of the optimisations introduced in the previous section.

• Array caching: Finishing my implementation of array caching and
determining the speed-up that can be achieved by it. According to
theoretical considerations confirmed by preliminary test runs, it should
be possible to eliminate a large proportion of the messages.

• Notifications and IPI: Using Barrelfish’s notification features to re-
duce the latency of messages. According to the Barrelfish documenta-
tion, latencies of 4,000 cycles per message could be achievable (instead
of 25,000 cycles in the current version).

5.2. LESSONS LEARNED 81

• Object relocation The current JVM only relocates objects when a
new thread is created. This could be changed to make placement de-
cisions at run-time and move objects between cores. In such a system,
a core would have to send a special message if another core tries to
access an object that has been relocated.

• Thread pools: A simple optimisation would be to use thread pools
instead of spawning new threads at each remote method call. None
of the benchmarks I used stresses remote method calls, but it is an
important feature for many applications.

• Running on the SCC: Running Barrelfish on the Computer Lab’s
Intel SCC [34] would be an opportunity to evaluate the performance
on a system that supports message passing in hardware.

Future work could also re-visit the idea of bringing up the Jikes RVM [16]
on Barrelfish. With the new features introduced in the March 2011 release,
this task could have become easier and many of the lessons from this project
still apply.

5.2 Lessons learned

During the project, I learned about many aspects of Barrelfish and JVMs,
much of which could not be covered in this dissertation. By studying Bar-
relfish’s source code, I gained a deeper understanding of the project and
subtleties in its implementation. I also encountered many obscure low-level
problems and bugs, both in my own code and within Barrelfish. This made
the project very educational and taught me many skills that will be useful
for future research in Operating Systems.

At the same time, the nature of the project led to a large degree of uncer-
tainty, especially with respect to Barrelfish. There are numerous examples
for this, such as a bug in the 2009 version of Barrelfish that caused URPC
messages to be lost, or the variance problem from Section 4.2.2. Furthermore,
I was unable to run Barrelfish on real hardware until March 2011.

Solving these problems took a large amount of time and introduced a cer-
tain risk for a time-limited project like this, an aspect I was not completely
aware of in the beginning. While it did not prevent the project from be-
ing completed successfully, it will still serve as a lesson learned for future
projects.

82 CHAPTER 5. CONCLUSIONS

5.3 Success of the project

The implemented JVM satisfies all requirements and core extensions (Section
2.3) and supports additional features that allow it to run a larger set of real-
world programs than specified, including a ray tracer (Section 4.1.3).

The JVM runs on Barrelfish, both using a shared memory approach (Section
3.6) and a distributed approach (Section 3.7). Performance measurements
have been taken for both approaches and allow to draw conclusions about
design-decisions for JVMs on Barrelfish (Section 4.2).

The project therefore satisfied or exceeded all its goals and can hence be
considered a success.

Bibliography

[1] Cyclone Microsystems - Programmable Network Adapters: PCI Express
and PCI-X. http://www.cyclone.com/products/network_adapters/
index.php.

[2] ”Distributed JVM” - Google Scholar. http://scholar.google.co.uk/
scholar?hl=en\&q=\%22Distributed+JVM\%22.

[3] J2MEUnit - A J2ME Unit Testing Framework. http://j2meunit.
sourceforge.net/.

[4] Java Platform, SE 6 - API Specification. http://download.oracle.
com/javase/6/docs/api/index.html.

[5] Memory management in the Java HotSpot virtual machine. http:
//java.sun.com/j2se/reference/whitepapers/memorymanagement_
whitepaper.pdf.

[6] OpenJDK. http://openjdk.java.net/.

[7] The Java HotSpot Performance Engine Architecture. http://java.
sun.com/products/hotspot/whitepaper.html.

[8] J. Andersson, S. Weber, E. Cecchet, C. Jensen, and V. Cahill. Ka↵emik-
a distributed JVM on a single address space architecture. In Java Virtual
Machine Research and Technology Symposium, 2001.

[9] Y. Aridor, M. Factor, and A. Teperman. cJVM: a single system image
of a JVM on a cluster. In icpp, page 4, 1999.

[10] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F Sweeney. Adaptive optimization in the Jalapeño JVM. In Pro-
ceedings of the 15th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA ’00, page
4765, New York, NY, USA, 2000. ACM.

83

84 BIBLIOGRAPHY

[11] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik
Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view of
the parallel computing landscape. Commun. ACM, 52:5667, October
2009.

[12] A. Baumann, P. Barham, P. E Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schpbach, and A. Singhania. The Multikernel: A new OS
architecture for scalable multicore systems. In SOSP, volume 9, page
2944, 2009.

[13] Andrew Baumann, Simon Peter, Adrian Schpbach, Akhilesh Singhania,
Timothy Roscoe, Paul Barham, and Rebecca Isaacs. Your computer
is already a distributed system. Why isn’t your OS? In Proceedings
of the 12th conference on Hot topics in operating systems, HotOS’09,
page 1212, Berkeley, CA, USA, 2009. USENIX Association. ACM ID:
1855580.

[14] Kent Beck and Erich Gamma. JUnit. http://www.junit.org/.

[15] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX
2005 Annual Technical Conference, FREENIX Track, page 4146, 2007.

[16] Alpern Augart Blackburn, S. Augart, S. M Blackburn, M. Butrico,
A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S Mckin-
ley, M. Mergen, J. E. B Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine project: Building an open-source research community.
IBM Syst. J., 44:399–417, January 2005.

[17] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul,
Charles E Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An Ef-
ficient Multithreaded Runtime System. JOURNAL OF PARALLEL
AND DISTRIBUTED COMPUTING, 37:207—216, 1995.

[18] B. W Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, May 1988.

[19] Erich Boleyn. GRUB - GRand Unified Bootloader. http://www.gnu.
org/software/grub/, 1996.

[20] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-
hua Dai, Yang Zhang, and Zheng Zhang. Corey: An Operating System
for Many Cores. In Proceedings of the 8th USENIX Symposium on Op-

BIBLIOGRAPHY 85

erating Systems Design and Implementation (OSDI ’08), page 4357, San
Diego, California, December 2008.

[21] Silas Boyd-Wickizer, Austin Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis
of Linux Scalability to Many Cores. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’10), Vancouver, Canada, October 2010.

[22] Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaashoek. Reinvent-
ing scheduling for multicore systems. In Proceedings of the 12th Work-
shop on Hot Topics in Operating Systems (HotOS-XII), Monte Verit,
Switzerland, May 2009.

[23] J. M Bull, L. A Smith, M. D Westhead, D. S Henty, and R. A Davey. A
Benchmark Suite for High Performance Java. Proceedings of the ACM
Java Grande Conference, pages 81—88, 1999.

[24] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,
and Bill Hughes. Cache Hierarchy and Memory Subsystem of the AMD
Opteron Processor. IEEE Micro, 30(2):16–29, March 2010.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord
Stein. Introduction to Algorithms, Second Edition. The MIT Press, 2nd
edition, September 2001.

[26] T. B Downing. Java RMI: remote method invocation, volume 9. IDG
Books Worldwide, 1998.

[27] J. Fenlason and R. Stallman. GNU gprof. GNU Free Software Founda-
tion, 1998.

[28] John L. Hennessy and David A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2006.

[29] A. Kleen. An NUMA API for Linux. 2004.

[30] Anil Kumar and Jerry St. Clair. CUnit - A Unit Testing Framework for
C. http://cunit.sourceforge.net/.

[31] James F Kurose and Keith W Ross. Computer Networking: A Top-
Down Approach (5th Edition). Addison Wesley, 5 edition, March 2009.
Published: Hardcover.

[32] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Spec-
ification (2nd Edition). Prentice Hall PTR, April 1999.

86 BIBLIOGRAPHY

[33] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovi, and J. Kubiatowicz.
Tessellation: Space-time partitioning in a manycore client OS. In Pro-
ceedings of the First USENIX conference on Hot topics in parallelism,
page 1010, 2009.

[34] T. G Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, et al. The 48-core SCC pro-
cessor: the programmer’s view. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, page 111, 2010.

[35] Timothy G Mattson, Rob Van der Wijngaart, and Michael Frumkin.
Programming the Intel 80-core network-on-a-chip terascale processor.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
SC ’08, page 38:138:11, Piscataway, NJ, USA, 2008. IEEE Press.

[36] Ross McIlroy and Joe Sventek. Hera-JVM: abstracting processor hetero-
geneity behind a virtual machine. In Proceedings of the 12th conference
on Hot topics in operating systems, HotOS’09, page 1515, Berkeley, CA,
USA, 2009. USENIX Association.

[37] Paul E. McKenney and Jonathan Walpole. What is RCU, funda-
mentally? Available: http://lwn.net/Articles/262464/, December
2007.

[38] Erik Meijer, Redmond Wa, and John Gough. Technical Overview of the
Common Language Runtime. Technical report, Microsoft, 2000.

[39] John M. Mellor-Crummey and Michael L. Scott. Synchronization with-
out contention. SIGARCH Comput. Archit. News, 19:269–278, April
1991.

[40] Kevin Modzelewski, Jason Miller, Adam Belay, Nathan Beckmann,
Charles Gruenwald, David Wentzla↵, Lamia Youse↵, and Anant Agar-
wal. An Operating System for Multicore and Clouds: Mechanisms and
Implementation. http://dspace.mit.edu/handle/1721.1/51381.

[41] D. G Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. CIEL: a universal execution engine for dis-
tributed data-flow computing. In Proceedings of the 8th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI’11,
Berkeley, CA, USA, 2011. USENIX Association.

[42] N. Nethercote and J. Seward. Valgrind:: A Program Supervision Frame-
work. Electronic notes in theoretical computer science, 89(2):4466, 2003.

BIBLIOGRAPHY 87

[43] E. B Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt.
Helios: heterogeneous multiprocessing with satellite kernels. In Pro-
ceedings of the 22nd ACM Symposium on Operating Systems Principles,
2009.

[44] D. Pham, S. Asano, M. Bolliger, M. N Day, H. P Hofstee, C. Johns,
J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy,
D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel,
T. Yamazaki, and K. Yazawa. The design and implementation of a first-
generation CELL processor. Solid-State Circuits Conference, 2005. Di-
gest of Technical Papers. ISSCC. 2005 IEEE International, pages 184–
592 Vol. 1, February 2005.

[45] T. L Rodehe↵er. Code Generation for the Beehive ISA. Technical Report
MSR-TR-2010-113, Microsoft Research, 2010.

[46] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for Java.
ECOOP 2008 Object-Oriented Programming, page 104128, 2008.

[47] Mark VanderVoord. CMock - Mock Module Generation Framework for
C. http://sourceforge.net/apps/trac/cmock/wiki.

[48] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

[49] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: a programmer-friendly
interface for accelerating Java programs with CUDA. Euro-Par 2009
Parallel Processing, page 887899, 2009.

[50] Kathy Yelick, Luigi Semenzato, Geo↵ Pike, Carleton Miyamoto, Ben
Liblit, Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David
Gay, Phil Colella, and Alex Aiken. Titanium: a high-performance
Java dialect. Concurrency: Practice and Experience, 10(1113):825–836,
September 1998.

[51] J. N Zigman and R. Sankaranarayana. dJVM - A distributed JVM on
a cluster. Technical report, Australian National University, 2002.

88 BIBLIOGRAPHY

A
Requirements Analysis

This appendix contains the full version of the first part of the requirements
analysis that was presented in Section 2.3.1. It lists the entire set of Java
features that had to be supported by the Barrelfish JVM, together with an
account of why they are required (where appropriate).

The following notation is used:

• (⇤) - required by JGFHeapSortBenchSizeA

• (†) - required by JGFSparseMatmultBenchSizeA

• (?) - required by j2meunit

Unmarked entries are generic requirements that are necessary to execute any
su�ciently complex Java program.

Description
J-1 Loading and linking classes (supporting inheritance)

Parsing class files to internal representation
Handling and extracting constant pool entries
Linking references to their actual representations
Calculating a memory layout for class instances
Looking up methods in ancestor classes
Supporting numeric constants (int, double) ⇤ †

89

90 APPENDIX A. REQUIREMENTS ANALYSIS

Description
J-2 Executing basic programs (supporting arithmetic, control transfer)

Integer arithmetic (int, long) ⇤ †
Floating-point arithmetic (double, float) ⇤ †
Control-transfer instructions (ifeq, goto, etc.)

J-3 Static method calls and static field access
Managing the JVM-stack (creating, deleting frames)
Looking up static methods and fields

J-4 Creating instances (heap), field access and virtual method calls
A working heap implementation
Running constructors and static initialisers
Creating class instances
Looking up virtual methods and fields from objects

J-5 Creating and manipulating arrays on the heap
J-6 Supporting native method calls and system features

Writing characters to the console ⇤ † ?
Fast copying of array contents (System.arraycopy())
System time (System.getCurrentTimeMillis()) ⇤ †
Math functions (java.lang.Math) ⇤ †

J-7 String handling (including command line arguments)
Supporting the java.lang.String class ⇤ † ?
Loading string constants from the constant pool ⇤ † ?
Using strings as keys (equals(), hashCode()) ⇤ † ?
Conversion between numbers and strings ⇤ † ?
Support for composing strings (StringBuilder) ⇤ † ?
Support for java.lang.StringBuffer (thread-safe) ?
Support for command line arguments ⇤ † ?

J-8 Spawning and joining threads, synchronisation primitives
Creation of threads and assigning them to cores †
Joining threads (potentially on a di↵erent core) †
Support for monitorenter and monitorexit † ?

J-9 Basic classes from the class library (e.g. java.util.HashMap)
Very basic introspection (java.lang.Class) ?
Command line output (java.io.PrintStream, etc.) ⇤ † ?
Java-compliant random numbers (java.util.Random) ⇤ †
Collections (java.util.Hashtable, java.util.Vector) ⇤ † ?

B
Test Report

This appendix lists the test that were performed to confirm the correctness of
the JVM. Information about the underlying testing methodology is given in
Section 2.4.1, while Section 4.1 summarises the results of the testing.

B.1 Regression and conformance tests

These are simple Java programs that were specified during the development
and capture a particular JVM feature. Some of them (marked by ⇤) are also
used as conformance tests and their execution trace is checked.

args, arrays⇤, concat, conditionals, constants⇤, constructor, distributed1, dis-
tributed2, fibonacci⇤, hashtable, helloworld, inheritance, instantiation, multi-
core1, multicore2, multiple classes, native calls, random, simple, sleep, static
fields⇤, strings, synchronized, threads

Barrelfish JVM - Conformance Testing

Test: Arrays ... PASS
Test: Constants ... PASS
Test: Fibonacci ... PASS
Test: StaticFields ... PASS

ALL TESTS OK

91

92 APPENDIX B. TEST REPORT

B.2 Unit tests

Unit tests for some of the JVM’s components. They have been implemented
using the CUnit [30] unit testing framework and CMock [47] for mocking.

Suite: loader
Test: 001 - loading an empty class ... passed
Test: 002 - loading a more complex class ... passed
Test: 003 - loading multiple classes ... passed

Suite: hashmap -naive
Test: 001 - get/set without concurrency ... passed
Test: 002 - unset without concurrency ... passed
Test: 003 - check for unset corner -case ... passed
Test: 004 - concurrent readers ... passed
Test: 005 - concurrent readers and writers ... passed

Suite: hashmap -array
Test: 001 - get/set without concurrency ... passed
Test: 002 - unset without concurrency ... passed
Test: 003 - concurrent readers ... passed
Test: 004 - concurrent readers and writers ... passed

Suite: linker
Test: 001 - linking an empty class ... passed
Test: 002 - linking a single , more complex class ... passed
Test: 003 - linking a hierarchy of classes ... passed
Test: 003 - resolution of references ... passed
Test: 004 - execution of static initializers ... passed
Test: 005 - reading special annotations ... passed

B.3 Integration tests

Java-based unit tests (j2meunit)

These tests contain more thorough testing of Java features and are written
in Java itself, executed by the unit testing framework j2meunit [3].

J2ME Unit 1.1.1 by RoleModel Software , Inc.
Original JUnit by Kent Beck and Erich Gamma

Suite: ArithmeticTest
.. testIntegerArithmetic
.. testLongArithmetic
.. testFloatArithmetic
.. testDoubleArithmetic
.. testIntegerBitwiseOperators
.. testLongBitwiseOperators

Suite: CastTest
.. testByteCasts
.. testIntegerCasts
.. testFloatingPointCasts
.. testObjectCasts

Suite: MethodCallTest
.. testStaticMethods
.. testInterfaceMethods
.. testVirtualMethods
.. testPrivateMethods
.. testMethodOverloading

Suite: InheritanceTest
.. testInheritance
.. testCircularDependency

Suite: ArrayTest
.. testIntArray
.. testLongArray
.. testObjectArray
.. testMultidimensionalArray

Suite: ConcurrencyTest
.. testThreads
.. testSyncMethods
.. testSyncOnObject

Suite: ClassLibraryTest
.. testHashtable
.. testIntrospection
.. testMath
.. testRandom
.. testString
.. testStringBuilder
.. testVector

B.3. INTEGRATION TESTS 93

Java Grande Benchmark Suite

The following benchmarks were successfully tested on the Barrelfish JVM (all
benchmarks were tested on Linux and the shared-memory JVM on Barrelfish).

Section 1 (sequential): JGFArithmeticBench, JGFAssignBench, JGFLoop-
Bench, JGFMethodBench; JGFMathBench (partial)

Section 2/3 (sequential): JGFCryptBench, JGFFFTBench, JGFHeap-
SortBench, JGFLUFactBench, JGFSeriesBench, JGFSORBench, JGFSparse-
MatmultBench (all sizes); JGFRayTracerBenchSizeA (Linux only)

Parallel: JGFSparseMatmultBenchSizeA/B (1-48 cores); JGFSyncBench,
JGFCryptBenchSizeA, JGFSeriesBenchSizeA, JGFSORBenchSizeA (4 cores)

94 APPENDIX B. TEST REPORT

C
Running example

This appendix presents a running example to accompany the implementation
chapter. It will show how a simple Java program is loaded by the class loader,
processed by the linker and executed by the interpreter.

Consider the following example program:

public class Example {
public static final long CONSTANT = System.currentTimeMillis ();
static class A { int a; public String getA() { return "Hello"; } }
static class B extends A { long b; public String get() { return getA (); } }
public static void main(String [] args) { System.out.println(new B(). get ()); }

}

Class loader

The Java compiler generates 3 class files: Example.class, Example$A.class
and Example$B.class. Each of these class files contains a constant pool (Sec-
tion 2.1.2). The loader parses all these files into appropriate data structures
(Figure 3.2), including the following:

• A jvm_class_info for each class (with associated methods, constant
pool and other data). For example, the super_class entry of B con-
tains an index (#4) into the constant pool where a Class_info entry
is stored, pointing to a string "Example$A".

95

96 APPENDIX C. RUNNING EXAMPLE

• jvm_method_info entries for get(), getA(), main() and three implicit
constructors. Each contains an index to name and signature strings in
the constant pool, e.g. "get()" and "()Ljava/lang/String;;".

• A jvm_attribute_info entry for each method, with a name index
pointing to a string "Code" (stored in the constant pool of the method’s
class) and containing the method’s bytecode, stack size, etc.

Linker

The structures produced by the class loader are translated to equivalent
structures in the linker. Each jvm_class_info is translated to a jvm_class,
storing, for example, the class name and the parent class. The jvm_class for
Example$B contains a super_class pointer to Example$A, the other classes
point to java.lang.Object, which was loaded automatically.

Methods are translated to jvm_method structures, including their name, sig-
nature, number of arguments, stack size and other values such as a pointer
to their byte code.

The constant pool is translated to a run-time constant pool, replacing indices
by explicit pointers. For example, entry #2 of B’s constant pool contains a
Methodref_info entry for getA(). It is replaced by an explicit pointer to
its jvm_method in the run-time constant pool. The reference is resolved by
first looking up getA() with signature "()Ljava/lang/String;;" in B and
when this fails, searching its super class A.

Furthermore, the linker calculates the memory layout for each of the classes.
An instance of A consists a pointer to A’s jvm_class followed by a 32-bit
value (int a), while instances of B consist of a pointer to B’s jvm_class
followed by a 32-bit value and a 64-bit value.

The linker will also invoke the interpreter to execute static initialisers. While
this program does not contain explicit initialisers, the compiler will automat-
ically generate an initialiser to execute System.currentTimeMillis() and
store its result in CONSTANT.

Interpreter

The interpreter looks up the main method in Example, sets up a JVM stack
and starts execution. For an example execution trace, see Appendix D.

D
Sample output

This appendix presents the abridged output of the Barrelfish JVM for fib(3),
the Fibonacci program given in Listing 2.1. All debug output is enabled.

Loading classes ...
Loaded class ’org/barrelfish/jvm/DistributedThread ’.
...
Loaded class ’Fibonacci ’.
Linking classes ...
Linking class ’org/barrelfish/jvm/DistributedThread ’
...
Initializing class java/lang/System ...
> new ’java/io/PrintStream ’
...
> putstatic #6 //Field java/lang/System.out
STACK: []
> return
...
Linking class ’Fibonacci ’
Initializing class Fibonacci ...
Running main method ...
> iconst_3
STACK: [3]
> invokestatic #2 // Method fib:(I)I
STACK: []
> iload_0
STACK: [3]
> iconst_1
STACK: [3 1]
> if_icmp* 5
STACK: []
> iload_0
STACK: [3]
> iconst_1
STACK: [3 1]
> isub
STACK: [2]

97

98 APPENDIX D. SAMPLE OUTPUT

> invokestatic #2 // Method fib:(I)I
STACK: []
> iload_0
STACK: [2]
> iconst_1
STACK: [2 1]
> if_icmp* 5
STACK: []
> iload_0
STACK: [2]
> iconst_1
STACK: [2 1]
> isub
STACK: [1]
> invokestatic #2 // Method fib:(I)I
STACK: []
> iload_0
STACK: [1]
> iconst_1
STACK: [1 1]
> if_icmp* 5
STACK: []
> iconst_1
STACK: [1]
> ireturn
STACK: [1]
> iload_0
STACK: [1 2]
> iconst_2
STACK: [1 2 2]
> isub
STACK: [1 0]
> invokestatic #2 // Method fib:(I)I
STACK: []
> iload_0
STACK: [0]
> iconst_1
STACK: [0 1]
> if_icmp* 5
STACK: []
> iconst_1
STACK: [1]
> ireturn
STACK: [1 1]
> iadd
STACK: [2]
> ireturn
STACK: [2]
> iload_0
STACK: [2 3]
> iconst_2
STACK: [2 3 2]
> isub
STACK: [2 1]
> invokestatic #2 // Method fib:(I)I
STACK: []
> iload_0
STACK: [1]
> iconst_1
STACK: [1 1]
> if_icmp* 5
STACK: []
> iconst_1
STACK: [1]
> ireturn
STACK: [2 1]
> iadd
STACK: [3]
> ireturn
STACK: [3]
> pop
STACK: []
> return

E
Sample code

This appendix shows a piece of example code to visualise the style of the Bar-
relfish JVM. The example is taken from the command line interface to launch
the JVM on Barrelfish. It presents aspects of running the JVM on Barrelfish,
handling messages and setting up the di↵erent JVM components.

/**
* \file
* \brief The command -line interface of the JVM on Barrelfish. It is used to
* spawn a JVM service on a core and can be invoked from the shell to execute
* a Java program on a particular core.
*/

// System includes
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Barrelfish includes
#include <barrelfish/barrelfish.h>
#include <barrelfish/dispatch.h>
#include <barrelfish/nameservice_client.h>

// Flounder definitions (this is automatically generated)
#include <if/jvm_defs.h>

// JVM includes (JVM , helpers , Barrelfish -specific)
#include "jvm/casts.h"
#include "jvm/class.h"
#include "jvm/debug.h"
#include "jvm/heap.h"
#include "jvm/interpreter.h"
#include "jvm/linker.h"
#include "jvm/loader.h"
#include "jvm/threads.h"

99

100 APPENDIX E. SAMPLE CODE

#include "util/hashmap.h"
#include "runner.h"

// Declare the message handlers on the distributed JVM
#ifdef DISTRIBUTED
...
#endif

// Interface to access the Java classes packaged with the executable
#include "package.h"

// Forward -declare JVM handler methods
static void execute(struct jvm_binding *b, char *class_name , char *args_str);
static void reset(struct jvm_binding *b);

/**
* A vtable containing the message handlers on the server -side. This is used
* by Flounder to dispatch incoming messages to their respective handler.
*/

static struct jvm_rx_vtbl server_vtbl = {
.execute = execute ,
.reset = reset ,

// Messages for the distributed JVM (defined in server.c)
#ifdef DISTRIBUTED
...
#endif

};

/**
* Indicates that the connection was successfully set up. No lock is required ,
* since this is only used during the setup phase , where only one thread can
* access this variable at a time. This variable is flipped from false to true ,
* once the connection is ready , which is the only write access to it.
*/

static bool request_done = false;

/// A connection to a JVM node.
static struct jvm_binding *binding = NULL;

/// Name of the JVM node this client is connecting to.
static char *service_name = "jvm_default";

/**
* Callback that is executed to configure the server ’s binding.
*
* \param st State passed to the callback (ignored).
* \param b The binding that has been created.
*
* \return Any errors that ocurred.
*/

static errval_t connect_cb(void *st , struct jvm_binding *b) {
assert(b != NULL);

// Set the server ’s message handler vtable
b->rx_vtbl = server_vtbl;

return SYS_ERR_OK;
}

/**
* Callback that is executed to register with the nameserver.
*
* \param st State passed to the callback (ignored).
* \param err Any errors that occured while binding.
* \param iref An interface reference that identifies the service.
*/

static void export_cb(void *st , errval_t err , iref_t iref) {
assert (! err_is_fail(err));
nameservice_register(service_name , iref);

}

101

/**
* Callback that is executed once the client successfully connected to a
* service.
*
* \param st State passed to the callback (ignored).
* \param b The binding that has been created.
*
* \return Any errors that ocurred.
*/

static void bind_cb(void *st, errval_t err , struct jvm_binding *b) {
assert (! err_is_fail(err));
assert(b != NULL);

binding = b;
request_done = true;

}

/**
* Handler for the execute message. This requests a server to execute a Java
* class. The class has to be known to it and contain a static main method
* with the following signature:
*
* public static void main(String [] args)
*
* The handler sets up a new thread and returns. It takes ownership of the
* string parameters passed to it.
*
* \param b A binding to send reply messages (ignored).
* \param class_name The name of the class to execute.
* \param An optional command line argument , "" if no argument is given.
*/

static void execute(struct jvm_binding *b, char *class_name , char *args_str) {
assert(class_name != NULL);
assert(args_str != NULL);

LOG("JVM node \"%s\": Executing class \"%s\".\n", service_name , class_name);

// XXX: Support more arguments if necessary.
uint32_t *args = (uint32_t *) malloc(sizeof(uint32_t));
if (strlen(args_str) == 0) {

// No argument given.
*args = heap_put_array(create_array(T_REFERENCE , 0));

} else {
// One argument given.
struct jvm_array *array = create_array(T_REFERENCE , 1);
array_store(array , 0, load_string(args_str));
*args = heap_put_array(array);

}

// Look up the class to execute.
struct jvm_class *main_class = get_class(class_name);

if (main_class == 0) {
printf("[Error] Class \"%s\" not found.\n", class_name);
return;

}

// Look up the main method.
struct jvm_method *entry_method = get_method(

main_class , "main", "([Ljava/lang/String ;)V");

if (entry_method == 0) {
printf("[Error] No entry method found in \"%s\".\n", class_name);
return;

}

// Run the interpreter
LOG("Running entry method ...");
create_runner_thread(main_class , entry_method , args , 1);

}

102 APPENDIX E. SAMPLE CODE

/**
* Handler for the reset message. This requests the JVM to reset its state to
* the initial configuration. However , the internal state will not be exactly
* the same (different memory allocations , etc.). This method is therefore not
* suitable for benchmarks.
*
* \param b A binding to send reply messages (ignored).
*/

static void reset(struct jvm_binding *b) {
LOG("JVM node \"%s\": Reset request .\n", service_name);
heap_reset ();
jvm_linker_reset ();
jvm_init_threads ();
printf("JVM reset completed .\n");

}

/**
* The entry point of the JVM. When called with one parameter , it launches a
* JVM server on the current core (this core is given in GRUB’s menu.lst , e.g.
* a line from menu.lst would look like
*
* module /x86_64/sbin/jvm core=0 jvm -node0
*
* When called with more than one parameter (usually from the shell), the
* application will connect to the jvm -server given as the first parameter
* and launch the class given as the second parameter , e.g.
*
* jvm jvm -node0 ClassA
*/

int main(int argc , char** argv) {
errval_t err;

// At least one argument has to be given.
if (argc <= 1) {

printf("Usage: jvm <service -name > [class -name]\n");
return 1;

}

// The first argument is the service name.
service_name = argv [1];

// If one argument is given , start a server.
if (argc == 2) {

// Initialize the JVM server.
LOG("Initializing JVM node ...");

// Initialize thread and synchronisation management.
jvm_init_threads ();

#ifdef DISTRIBUTED
jvm_init_sync ();
#endif

// Load all classes packaged with the executable.
uint16_t class_count = get_package_classes_count ();
void ** class_data = get_package_classes ();

struct jvm_class_info ** loaded_classes = (struct jvm_class_info **)
malloc(sizeof(struct jvm_class_info *) * class_count);

assert(loaded_classes != NULL);

LOG("Loading classes ...");
for (int i = 0; i < class_count; i++) {

loaded_classes[i] = load_class(class_data[i], 0);
}

// Initialise the core JVM (e.g. Heap , lookup tables , etc.)
#ifdef DISTRIBUTED
jvm_init(disp_get_core_id ());
init_distributed_jvm ();
#else
jvm_init ();
#endif

103

// Link all classes.
LOG("Linking classes ...");
jvm_init_linker(class_count , loaded_classes);

// Set up the JVM service for this node.
LOG("Setting up JVM service ...");
err = jvm_export(NULL , export_cb , connect_cb ,

get_default_waitset (), IDC_EXPORT_FLAGS_DEFAULT);

if (err_is_fail(err)) {
ERROR("Setting up the JVM service failed .\n");
exit(-1);

}

LOG("JVM server at \"%s\" is ready.", service_name);

// Main message handling loop. Barrelfish applications never exit.
while (1) {

messages_wait_and_handle_next ();

// Prevents the message -handling loop from hogging the system for an
// entire time -slice (80ms). This is necessary since incoming messages
// may unblock other threads that need to be executed to avoid delays.
// This has no effect if there is no other thread running.
thread_yield ();

}
} else {

// Create a client and execute a class on a different JVM node.
LOG("Launching JVM client ...");

// Look up the JVM service from the name server.
iref_t iref;
err = nameservice_blocking_lookup(service_name , &iref);

if (err_is_fail(err) && iref != 0) {
printf("[Error] Failed to lookup JVM node.\n");
exit(-1);

}

// Create a connection to the service.
jvm_bind(iref , bind_cb , NULL , get_default_waitset (),

IDC_BIND_FLAGS_DEFAULT);

// Wait until setting up the connection is finished.
while (! request_done) {

messages_wait_and_handle_next ();
}

// XXX: For now only support a single argument.
char *args = "";
if (argc > 3)

args = argv [3];

if (! strcmp(argv[2], "reset")) {
// Send a reset request to the server.
jvm_reset__tx(binding , NOP_CONT);

} else {
// Send an execution request to the server.
jvm_execute__tx(binding , NOP_CONT , argv[2], args);

}

// Main message -handler loop (details above).
while (1) {

messages_wait_and_handle_next ();
thread_yield ();

}
}

// This should never happen.
return 0;

}

104 APPENDIX E. SAMPLE CODE

F
Profiling results

This appendix presents the output of gprof when applied to the Barrelfish
JVM running the sequential JGFSparseMatmultBenchSizeA benchmark us-
ing the managed heap approach (Section 3.4.4) on Linux. It shows that even
on a benchmark dominated by memory access, the JVM spends most of its
time in the interpreter loop and that there are no unexpected bottlenecks.

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
79.62 11.94 11.94 16 0.75 0.91 run
7.27 13.03 1.09 150250001 0.00 0.00 array_load64
4.40 13.69 0.66 603601432 0.00 0.00 heap_get_array
3.33 14.19 0.50 101000638 0.00 0.00 array_load
3.13 14.66 0.47 129 0.00 0.00 load_class
1.20 14.84 0.18 73 0.00 0.00 array_length
0.40 14.90 0.06 50300003 0.00 0.00 array_store64
0.33 14.95 0.05 2400287 0.00 0.00 create_frame
0.27 14.99 0.04 500020 0.00 0.00 array_store
0.07 15.00 0.01 1900311 0.00 0.00 get_method
0.00 15.00 0.00 7452574 0.00 0.00 heap_get_instance
0.00 15.00 0.00 2400287 0.00 0.00 push_frame
0.00 15.00 0.00 1900158 0.00 0.00 lookup_method
0.00 15.00 0.00 135416 0.00 0.00 get_cp_string
0.00 15.00 0.00 121263 0.00 0.00 get_class_name
0.00 15.00 0.00 2197 0.00 0.00 get_class_index
0.00 15.00 0.00 2124 0.00 0.00 get_class_by_index
0.00 15.00 0.00 1191 0.00 0.00 extract_ref_info
0.00 15.00 0.00 951 0.00 0.00 extract_special_flags
0.00 15.00 0.00 944 0.00 0.00 get_method_index_by_name_and_type
0.00 15.00 0.00 944 0.00 0.00 lookup_method_definition
0.00 15.00 0.00 647 0.00 0.00 extract_class_ref
0.00 15.00 0.00 499 0.00 0.00 extract_code_attribute
0.00 15.00 0.00 316 0.00 0.00 get_field_index_by_name_and_type

105

106 APPENDIX F. PROFILING RESULTS

0.00 15.00 0.00 316 0.00 0.00 lookup_field_definition
0.00 15.00 0.00 250 0.00 0.00 heap_alloc_array
0.00 15.00 0.00 250 0.00 0.00 heap_put_array
0.00 15.00 0.00 216 0.00 0.00 make_array
0.00 15.00 0.00 146 0.00 0.00 get_class
0.00 15.00 0.00 129 0.00 0.00 calculate_field_offsets
0.00 15.00 0.00 129 0.00 0.00 create_class
0.00 15.00 0.00 129 0.00 0.00 jvm_init_class
0.00 15.00 0.00 129 0.00 0.00 link_class
0.00 15.00 0.00 39 0.00 0.00 dispatch_native_call
0.00 15.00 0.00 34 0.00 0.00 create_array
0.00 15.00 0.00 31 0.00 0.00 create_instance
0.00 15.00 0.00 31 0.00 0.00 heap_alloc_instance
0.00 15.00 0.00 31 0.00 0.00 heap_put_instance
0.00 15.00 0.00 26 0.00 0.00 System_arraycopy8
0.00 15.00 0.00 15 0.00 0.00 jvm_run
0.00 15.00 0.00 9 0.00 0.00 class_instanceof
0.00 15.00 0.00 3 0.00 0.00 ConsoleOutputStream_write_AB
0.00 15.00 0.00 3 0.00 0.00 ConsoleOutputStream_write_I
0.00 15.00 0.00 2 0.00 0.00 Configuration_get_core_count
0.00 15.00 0.00 2 0.00 0.00 System_currentTimeMillis
0.00 15.00 0.00 1 0.00 0.00 Configuration_get_threading_mode
0.00 15.00 0.00 1 0.00 0.00 ValueConverter_double2string
0.00 15.00 0.00 1 0.00 0.00 ValueConverter_float2string
0.00 15.00 0.00 1 0.00 0.00 get_package_classes
0.00 15.00 0.00 1 0.00 0.00 get_package_classes_count
0.00 15.00 0.00 1 0.00 0.00 hashmap_create
0.00 15.00 0.00 1 0.00 0.00 jvm_heap_init
0.00 15.00 0.00 1 0.00 0.00 jvm_init
0.00 15.00 0.00 1 0.00 14.31 jvm_init_linker
0.00 15.00 0.00 1 0.00 0.00 jvm_init_threads
0.00 15.00 0.00 1 0.00 0.11 jvm_run_args

This appendix only shows the flat profile given by gprof, which shows how
much time is spent in each of the JVM’s functions. It can be seen that the
JVM spends 79.62% of its time in the interpreter (function run), which is a
good result given that the benchmark performs a significant amount of heap
access and aload/astore operations.

For additional information about the meaning of the di↵erent columns, please
refer to the gprof documentation [27].

G
Class Library

This appendix lists the classes of the Java Class Library [4] that have been
implemented for the Barrelfish JVM. Most implementations are partial and
supported features are given as appropriate. In addition to the classes from
the Class Library, this section also gives classes of the Barrelfish JVM.

G.1 Java Class Library

Class Comments
java.io.FilterOutputStream full implementation
java.io.OutputStream full implementation
java.io.PrintStream println, print, etc.
java.io.Serializable empty marker interface
java.lang.ArithmeticException no exception handling
java.lang.Class forName, newInstance, etc.
java.lang.Double equals, toString, valueOf
java.lang.Error no exception handling
java.lang.Exception no exception handling
java.lang.Float equals, toString, valueOf
java.lang.Integer equals, toString, valueOf

107

108 APPENDIX G. CLASS LIBRARY

Class Comments
java.lang.InterruptedException no exception handling
java.lang.Long equals, toString, valueOf
java.lang.Math wraps parts of libc
java.lang.Object toString, getClass and equals
java.lang.Runnable full interface
java.lang.RuntimeException no exception handling
java.lang.StringBuffer core functionality (append)
java.lang.StringBuilder core functionality (append)
java.lang.String core functionality (+ substring)
java.lang.System out, arraycopy, currentTime...
java.lang.Thread implements threading for JVM
java.lang.Throwable empty marker interface
java.util.Dictionary core functionality
java.util.Enumeration core functionality
java.util.Hashtable core functionality
java.util.Random from documentation
java.util.Vector core functionality

G.2 Barrelfish JVM Classes

All these classes are in the org.barrelfish.jvm package.

Class Comments
Configuration access to configuration settings
ConsoleOutputStream command line output
CoreLocal custom annotation
DistributedThread thread on a di↵erent core (distributed)
DomainThread thread on a di↵erent core (shared memory)
LocalThread thread on the same core
Sticky custom annotation
StringManager create strings from constant pool entries
ValueConverter convert between numerical values and strings

H
Project Proposal

The next pages present the original project proposal. Some aspects of the
project have been further extended and evidence for this is given in the main
part of the dissertation.

109

110 APPENDIX H. PROJECT PROPOSAL

A JVM for the Barrelfish operating system
Part II Project Proposal - Martin Maas

1 Introduction and Description of the Work

Barrelfish is a research operating system developed at ETH, Zurich and Microsoft Research,
Cambridge. It is based on the multikernel model [1], an OS structure that treats multicore
systems as networks of independent nodes communicating via message-passing. This model
arguably provides a better match for modern hardware: As multicore systems contain
rising numbers of cores and are increasingly heterogeneous, providing a shared memory
model becomes more di�cult and expensive in terms of performance. At the same time,
hardware is becoming more diverse, so that optimising an OS for di↵erent architectures
can be prohibitively complex. Barrelfish aims to avoid these problems by making the OS
hardware-neutral and viewing state as replicated instead of shared.

This project is concerned with the implementation of a Java Virtual Machine (JVM) for
Barrelfish. It has been demonstrated that a JVM can be seen as a suitable abstraction for a
heterogeneous multi-core system since it hides the distributed model and core heterogenity
from the programmer. A JVM implementation on Barrelfish could be used for research
in areas such as design of distributed JVMs on multicore systems, garbage collection in
distributed systems and thread-scheduling for multicore systems.

The core part of the project involves the implementation of a feature-reduced Java Bytecode
interpreter and bringing it up on Barrelfish. Extensions will explore enabling this JVM
to support execution of threads on multiple nodes of a system, through both a traditional
shared memory approach and through a distributed system approach similar in style to
Barrelfish’s share-nothing model.

2 Starting Point

1. Basic knowledge of Java Bytecode and the Java Virtual Machine from the Part IB
courses Compiler Construction, Computer Design and Further Java.

2. Rudimentary knowledge of the multikernel model, the Barrelfish operating system
and distributed Java Virtual Machines (from preliminary reading).

3. Successful compilation and execution of Barrelfish (on qemu).

4. Some experimental code written during the first weeks of Michaelmas term.

1

111

3 Substance and Structure of the Project

The core version of the JVM will support the following features of Java Bytecode: Object
allocation, field access, static method calls, simple virtual method calls, integer arithmetic
and simple threading. These features are su�cient for executing meaningful programs while
leaving out parts that are not significant for research applications.

The core part of the project contains the following elements and features. Dependencies
are implied by the order, but parallelisation is possible for some items.

Implementing a feature-reduced JVM on a traditional operating system (Linux)

• A basic class loader supporting class_info, field_info and method_info
entries, constants (except for CONSTANT_Float and CONSTANT_Long) as well as
ConstantValue and Code attribute_info entries. Classes will not be loaded
at runtime, i.e. all required classes must be provided at start-up. Interfaces will be
ignored and the verification stage will be omitted.

• The main part of the interpreter, including the main loop, the method area and the
call stack (where frames contain the program counter, local variables, the operand
stack, the current class and the current method).

• Support for static method invocations and related instructions (invokestatic,

*return). This involves managing frames on the call stack.

• Support for instructions related to integer arithmetic (iadd, isub,. . .) as well as
control transfer and conditionals (ifeq, goto,. . .).

• Support for new instruction and object creation.

• Support field access using the getfield, putfield,. . . instructions.

• Simple virtual method invocations (i.e. without inheritance).

• Facilities for basic file input/output (providing native, partial implementations of
java.io.FileOutputStream and java.io.FileInputStream) as well as
simple terminal output for debug information.

• Threading support via a native, partial implementation of java.lang.Thread
(only providing the run and join methods).

• A set of tests to verify the correctness of the JVM. This includes writing simple
Java programs and comparing their results to the ones given by a reference JVM
implementation (Sun/Oracle Java SE 6).

• Benchmarks to evaluate performance compared to the reference implementation.

2

112 APPENDIX H. PROJECT PROPOSAL

Bringing up the JVM on a single Barrelfish node.

• Adapting the code to work with peculiariaties of Barrelfish such as file handling, I/O
and threading.

• Providing facilities to load class files, either using basic file system support or bundling
the class files with the JVM executable.

• Evaluating success using the tests written previously. Use the benchmarks to compare
the performance of the JVM running on Barrelfish vs. the JVM running on Linux
(within the same setup, i.e. qemu).

In addition to this core part, there are a number of extensions to the project that will be
attempted if the implementation of the core part leaves enough time:

• Making the JVM run distributedly on multiple nodes using shared memory.

– Facilities to spawn threads on di↵erent nodes. Threads will be evenly distributed
across the available cores without any advanced scheduling policy.

– Synchronization and a shared heap between the threads using mechanisms that
are already provided by Barrelfish.

• Implementing the shared heap based on a distributed model.

• Evaluating the correctness of the two implementations and compare their perfor-
mance. This requires the implementation of additional tests and benchmarks.

Further features of Java Bytecode (e.g. arrays) will be implemented as necessary. If it
turns out to be sensible, a simple mark-and-sweep Garbage Collector running on one node
might be implemented as well.

4 Success Criterion

The core parts of the project will have been a success if the JVM:

1. runs on the Barrelfish operating system

2. can load a set of classes and run a specified entry-point method

3. gives the same result as the reference JVM on all of these calculations

This refers to classes and bytecode only using the specified features. Success will be evaluated
using a suitable set of Java programs that will be created during the project.

3

113

5 Timetable and Milestones

Note that this timetable allows su�cient time for revision during the vacations. Unassigned
time slots might also be used to work on extensions.

Block 1: 7 October - 22 October
Discuss project with supervisors, write project proposal, preliminary reading, familiarise
with Barrelfish and the JVM Specification, run small test applications on Barrelfish.

Milestones: Project proposal, test applications

Block 2: 23 October - 5 November
Load class files, execute basic bytecode (integer arithmetic, run static methods, read/write
static fields, execute control transfer instructions), write simple Java programs and tests.

Milestones: Basic JVM that supports these features

Block 3: 6 November - 19 November
Implement object allocation, virtual method-calls, non-static fields, rudimentary input/output,
basic threading, write Java programs and tests to verify these features.

Milestones: JVM supports these features.

Block 4: 20 November - 3 December
Write benchmarks and measure performance, Time to catch up, fix bugs, tidy up code.

Milestones: JVM supports dynamic linking and Linux-JVM code is finalised.

Block 5: 4 December - 17 December
Make this JVM run on a single Barrelfish node and verify correctness using the tests.

Milestones: JVM running on a single Barrelfish node.

Block 6: 1 January - 14 January
Finish migration to Barrelfish, perform evaluation, write dissertation outline.

Milestones: Barrelfish-JVM code is finalised, a suite of test cases and benchmarks for
evaluation, notes for the structure and the content of the dissertation.

Block 7: 15 January - 28 January
Start writing introduction and preparation chapter of the dissertation, work on extensions.

Milestones: Introduction and preparation chapter are finished.

4

114 APPENDIX H. PROJECT PROPOSAL

Block 8: 29 January - 11 February
Create progress report and presentation, work on extensions and dissertation.

Milestones: Introduction and preparation chapter are finished.

Block 9: 12 February - 25 February
Work on extensions and dissertation.

Milestones: Implementation and evaluation chapter are finished.

Block 10: 26 February - 11 March
Complete dissertation draft, incorporate extensions, finalise code.

Milestones: Dissertation draft and code are finished.

Block 11: 23 Apr - 6 May
Finalise the dissertation and proof-reading.

Milestones: Dissertation completed and ready to hand in.

Block 12: 7 May - 20 May
This block is intended as a bu↵er for any serious issues.

Milestones: Dissertation handed in by the deadline.

References

[1] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The multikernel: A new os architecture for scalable
multicore systems. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 29–44, New York, NY, USA, 2009. ACM.

5

