
Taurus: A Holistic Language Runtime System for
Coordinating Distributed Managed-Language Applications

Martin Maas? Krste Asanović? Tim Harris† John Kubiatowicz?
? University of California, Berkeley † Oracle Labs, Cambridge

Abstract
Many distributed workloads in today’s data centers are writ-
ten in managed languages such as Java or Ruby. Examples
include big data frameworks such as Hadoop, data stores
such as Cassandra or applications such as the SOLR search
engine. These workloads typically run across many indepen-
dent language runtime systems on different nodes.

This setup represents a source of inefficiency, as these
language runtime systems are unaware of each other. For
example, they may perform Garbage Collection at times that
are locally reasonable but not in a distributed setting.

We address these problems by introducing the concept
of a Holistic Runtime System that makes runtime-level de-
cisions for the entire distributed application rather than lo-
cally. We then present Taurus, a Holistic Runtime System
prototype. Taurus is a JVM drop-in replacement, requires al-
most no configuration and can run unmodified off-the-shelf
Java applications. Taurus enforces user-defined coordination
policies and provides a DSL for writing these policies.

By applying Taurus to Garbage Collection, we demon-
strate the potential of such a system and use it to explore
coordination strategies for the runtime systems of real-world
distributed applications, to improve application performance
and address tail-latencies in latency-sensitive workloads.

1. Introduction
A large portion of workloads that are running in cloud data
centers are written in managed languages such as C#, Go,
Java, JavaScript/node.js, PHP/Hack, Python, Ruby or Scala.
According to a recent survey [48], 4 out of the 6 most popu-
lar languages are managed languages, and many widely used
cloud frameworks – such as Hadoop [66], Cassandra [1] or
Spark [68] – are written in these languages.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).
ASPLOS ’16, April 02-06, 2016, Atlanta, GA, USA
ACM 978-1-4503-4091-5/16/04.
http://dx.doi.org/10.1145/2872362.2872386

Spark Hadoop Spark Spark

Distributed Runtime System Coordination
Runtime

Holistic Runtime System

Runtime Runtime Runtime

LinuxLinux

Policies

Figure 1: A Holistic Runtime System coordinates individual
runtimes across machines based on a policy.

We see this trend continuing: Companies such as Twit-
ter [17] or Facebook [8, 14] are writing most of their code in
Scala and PHP/Hack. At the same time, cloud platforms such
as Google AppEngine [7] or Microsoft Azure [13] are sup-
porting managed language as explicit targets. Finally, many
web startups write their code in languages such as Python,
Ruby or JavaScript, as it allows them to iterate quickly.

Unfortunately, managed languages are known to cause
performance overheads in some use cases [25, 38], and much
work has been done to address these. However, most of this
work looks at individual nodes. When running distributed
managed applications and frameworks such as Hadoop or
Spark at a rack or data-center scale, the application spans
many processes across multiple nodes, each with its own
runtime system. As we show in this paper, this causes prob-
lems beyond those encountered within an individual runtime
system. Specifically, the language runtime systems on dif-
ferent nodes make completely independent decisions, such
as about when to perform GC or how to JIT their code. This
causes performance problems for many workloads, includ-
ing both throughput-oriented and latency-sensitive jobs.

To address these problems, we propose what we call a
Holistic Runtime System (Figure 1). A Holistic Runtime Sys-
tem is a distributed language runtime system that treats the
runtimes underlying a distributed application as a distributed
system itself and enables them to make decisions globally
rather than individually. As such, it adopts some of the ideas
from distributed operating systems [26, 44, 49, 53, 57] and
applies them to language runtimes systems. This approach is
motivated by today’s low-latency data center networks and



a trend towards rack-scale machines that enable a tighter in-
tegration of nodes in distributed systems. At the same time,
data center workloads interact at ever smaller time-scales.
These developments make it both feasible and necessary to
integrate the runtime systems in a cluster more closely.

One design point would be a monolithic distributed run-
time system with a single-system view [45]. However, this
approach raises challenges with (1) compatibility with exist-
ing applications, (2) predictability by hiding the distinction
between local and remote memory, (3) failure isolation, and
(4) scalability bottlenecks such as those from distributed GC
across a shared heap. We therefore propose an intermediate
approach that retains the boundaries between individual run-
time systems but enables coordination between them. Appli-
cations do not need to be aware that the runtime systems they
are running across are part of the same logical entity. This
enables running unmodified workloads, where the Holistic
Runtime transparently applies policies for GC, compilation,
etc. At the same time, workloads that know they are running
on such a system can communicate with it to take advantage
of its global knowledge and coordination capabilities.

To demonstrate the effectiveness of this approach, we
built Taurus, a Holistic Language Runtime System for Java,
with a specific focus on GC. Taurus is based on the Open-
JDK Hotspot JVM and is a JVM drop-in replacement. It re-
quires no modification of the application: once installed, run-
ning a Java application will automatically run it with Taurus,
which joins it into the distributed system so that it can par-
take in global decision-making. Applications can then sup-
ply policies (written in a special DSL) to instruct Taurus how
to coordinate language events (such as GC) between nodes.

We run two real-world workloads with Taurus. By using
Taurus to coordinate GC, we show that it can reduce the exe-
cution time of a Spark PageRank workload by 21% and elim-
inate many GC-related stragglers for a Cassandra workload
(reducing the 99.99%ile latency from 65.7 ms to 33.8 ms for
reads, 40.7 ms to 10.1 ms for updates). At the same time,
Taurus adds negligible overhead, scales to at least 180 nodes
and is robust against failures (mostly isolating its faults from
the applications and runtimes that it manages).

In this paper, we first make the case that the approach we
take with the Holistic Runtime System – and Taurus in par-
ticular – is promising (Section 2). We then give an overview
of the design of a Holistic Runtime System (Section 3), fol-
lowed by a description of our policy DSL (Section 4) and
the specific implementation details of Taurus (Section 5).
We then evaluate Taurus on real-world workloads and mi-
crobenchmarks (Section 6). Finally, we present related work
(Section 7) and draw our conclusions (Section 8).

2. Motivation & Case Studies
In this section, we make the case for using a Holistic Run-
time System and why it is time to look at language runtime
systems from a distributed systems perspective.

2.1 Opportunities of Managed Languages
The primary reason for using managed languages is arguably
an increase in productivity, driven by features such as dy-
namic typing, class resolution at runtime, reflection and GC.
The latter is particularly important: automatic memory man-
agement reduces the engineering overhead from managing
explicit pointers and eliminates many sources of errors. Fur-
ther advantages of managed languages include opportunities
for dynamic optimization – data center workloads are of-
ten running for a long time and can therefore amortize JIT
overheads. Many managed runtimes also compact memory
during execution; this is important for long-running appli-
cations, since they can otherwise experience performance
degradation from fragmentation and loss of locality.

2.2 Problems for Distributed Applications
The advantages of managed languages often come at the cost
of substantial overheads over native code. These overheads
have been well-studied. The most significant challenge is of-
ten considered to be GC, with thousands of academic pa-
pers in this area. Other overheads include JIT compilation
and profiling [25], type resolution [19], as well as over-
heads from boxed types, indirection and additional safety
checks [38]. Many previous works address these challenges
for individual runtime systems on a single machine, and
tremendous progress has been made. However, when run-
ning distributed applications across multiple runtime sys-
tems, a largely orthogonal set of problems emerges. We di-
vide these problems into four categories:

Lack of Coordination between Nodes. Runtime systems
on different nodes are unaware of each other. This means
that they make all decisions independently, e.g., when to
perform GC. As we show in the next section, this can have
a significant impact on distributed workloads, both batch
workloads and interactive jobs. Similar problems have been
reported in several real-world deployments [9, 15, 33].

Interference within Nodes. Runtime systems on the same
node do not coordinate. While co-scheduling of data cen-
ter workloads is well-investigated and has been addressed
by many projects [27, 30, 35, 43], most of these projects
do not look at managed-language-specific issues such as
GC interference or instruction cache pollution from multiple
copies of the same code. Some distributed Java applications
have 100s of instances on the same node – this can make
these overheads substantial, and motivated the Multi-tasking
Virtual Machine project [41] and JSR-121 [11]. However,
MVM never achieved widespread adoption, presumably due
to concerns about failure propagation and difficulty of de-
ployment (two issues we are addressing in this work).

Slow Elasticity. Managed language runtimes take a long
time to boot and reach their full performance, partly due to
warming up the code cache. This introduces overhead when
adding processes at a fine granularity, as well as time skew.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Superstep

0

5

10

15

20

E
xe

cu
tio

n 
tim

e 
(s

)

(a) Baseline System (no coordination)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Superstep

0

5

10

15

20

E
xe

cu
tio

n 
tim

e 
(s

)

(b) Coordinating GC (Stop-the-Universe)

Figure 2: Relation between GC and the superstep durations
of Spark PageRank (shade represents the number of nodes
performing GC during a superstep; white = no GC). As soon
as one node performs GC, the superstep takes much longer.

Redundancy. Every runtime system has its own JIT. As
distributed workloads often run the same executable on ev-
ery node (or even multiple instances of the same executable),
this causes wasteful re-JITing of shared code. Companies
such as Microsoft are therefore starting to forego the JIT in
favor of statically pre-compiled binaries [3, 10]. However,
this loses benefits from profile-directed dynamic optimiza-
tion (e.g., trace-driven compilation and dynamic inlining).

2.3 Case Studies
We will now show how the first problem materializes in
the two main categories of workloads encountered in data
centers: throughput-oriented “batch” workloads such as big
data computations (where we care about the completion
time) and latency-sensitive “interactive” workloads (where
we care about the distribution of response times).

2.3.1 Batch Workloads
We illustrate the problems caused by a lack of coordina-
tion between runtime systems for batch workloads, using
iterative computations in Apache Spark [68] as an exam-
ple. Spark is a popular Scala framework for distributed com-
putation. It can run a wide range of workloads, including
graph computations [34], machine learning, database work-
loads [67] and stream computations [69].

Many Spark workloads are very memory-intensive. Spark
is based on applying operators and transformations to large
distributed data sets; as a result, it exercises the heap sig-
nificantly. Spark, by default, uses the parallel scavenge/se-
rial mark-sweep-compact stop-the-world GC in the Hotspot
JVM, which has very high collection performance but fre-
quently incurs short pauses to perform young-generation GC
(on the order of 100s of ms) and every once in a while incurs
very long pauses (up to multiple seconds) for full GC.

These long pauses cause difficulties during iterative com-
putations. Figure 2 shows an example of a 30-superstep
PageRank computation – the example from the original
Spark paper [68] – on a 16-node cluster (Section 6.2 de-
scribes the setup in detail). During each superstep, Spark
launches a number of tasks on each worker node. Once all
tasks have completed, the nodes exchange results and can
only continue after this exchange has completed. As a result,
this step effectively acts as a barrier between supersteps.

In the absence of GC, every superstep takes a similar time
(Figure 2a). However, when one node performs a full GC, it
pauses for multiple seconds and all other nodes have to wait
at the barrier for that node to become available again. While
waiting, they cannot do any work themselves. Worse, when
they continue, they will at some point incur a GC as well,
and become the reason for other nodes to wait.

The root cause of this problem is that the runtime systems
make independent decisions about when to perform GC. The
memory on the different nodes fills up at a different rate, and
therefore their GCs will occur at different times. But what if
the system was globally coordinated? In that case, the best
decision would be to let all nodes do GC at the same time:
since nodes have to wait for a single node in GC, they can
use that time efficiently by performing their own GC. We
call this policy Stop-the-Universe. Figure 2b shows its effect:
even on this relatively small workload, it leads to a speedup
of 21% (excluding the initial loading of the graph from disk).

We note that this problem is common to all distributed
iterative computations with global barriers. This includes
many Machine Learning algorithms (e.g., Logistic Regres-
sion) and graph workloads (e.g., Shortest Path). The problem
is somewhat reminiscent of inter-thread synchronization in
parallel workloads and the OS Noise problem in HPC [63].
Both are often solved using gang-scheduling, and Stop-the-
Universe can be seen as its language-runtime equivalent.

Similar problems have recently been confirmed for Naiad
workloads [33]. This indicates that this class of problems
applies to a wider range of workloads and runtime systems.

2.3.2 Interactive Workloads
We now demonstrate a different set of problems which is en-
countered by latency-sensitive workloads. This includes data
stores such as Cassandra [1], client applications such as the
SOLR search engine [60] or systems-level software such as
ZooKeeper [39]. Data center applications are interacting at
ever smaller time-scales (such as in algorithmic trading, real-
time bidding for ads, or low-latency storage [52]). Further,
applications are often composed of hundreds of services [29]
and the expected latencies for individual services have de-
creased to micro-second granularities. In such a scenario,
stragglers are a significant problem since a single straggler
can cause an entire request to miss its deadline. GC can be
a significant contributor to this problem – even minor-GC
pauses at the order of milliseconds are problematic when
services operate at micro-second granularity.



80 85 90 95 100 105 110 115 120
Time (s)

0

5

10

15

20

Q
ue

ry
 L

at
en

cy
 (m

s)

(a) Request latencies over time

5-10 ms 10-50 ms > 50 ms
Query Latency

0

500

1000

1500

2000

2500

N
um

be
r o

f Q
ue

rie
s

0 in GC
1 in GC
2 in GC

3 in GC
4 in GC

(b) Stragglers coinciding with GC

Figure 3: Correlation between stragglers in Cassandra read
queries and GC. Grey lines in (a) are minor GCs and la-
tencies of (potentially concurrent) request are averaged over
10ms intervals. The average request latency was 277 us.

We use the Cassandra key-value store as an example. Cas-
sandra uses consistent hashing to replicate data across a sub-
set of nodes. Requests can be sent to any node, which then
assembles a quorum by contacting the replicas. While Cas-
sandra uses a concurrent collector, it still experiences multi-
millisecond pauses for young-generation GC (note that most
concurrent collectors still introduce some form of jitter like
this). To show the impact of these pauses, we ran a 4-node
Cassandra cluster with the YCSB benchmark [28] for 10M
queries (details can be found in Section 6.3). While the av-
erage latency for reads was 277 us, we occasionally incurred
latencies that were over 100× larger. Figure 3a shows that
these spikes mostly coincide with GC pauses (grey lines).
Figure 3b shows that, in fact, most requests longer than 10
ms coincided with a GC pause, either in the node that re-
ceived the request or in a node required to assemble a read
or write quorum (concurrent work [31] presents related re-
sults). Note that these numbers might even understate the
impact of GC, due to correlated omission in YCSB [65].

The fundamental problem is, once again, ignoring the
language runtime system as part of the distributed system.
Runtime systems make their GC decisions independently
and collect as soon as their young generation fills up, stalling
the application without warning. For example, two replicas
holding the same entry can go down for GC at the same
time, making it impossible to assemble a quorum. Further,
services often have a choice where to send a request – for
example, Cassandra requests can be handled by any node.
However, when sending a request to a node that starts a GC
pause before sending a response, we introduce a straggler.

Many of these problems could be avoided in a globally
coordinated system. One approach is to expose the state of
all runtime systems to the logic that directs requests to differ-
ent servers (e.g., the load balancer). This makes it possible to
avoid nodes that are close to GC – we call this Request Steer-
ing. Another strategy is to globally schedule GC such that
there is always a sufficient number of replicas of any service
available – we call this approach Staggered GC. Concurrent
work [62] also confirms the efficiency of similar strategies.

2.4 What Does Software Do Today?

Problems such as the ones above have been reported for
a wide range of applications and frameworks, including
Hadoop [9], SOLR [60] and financial applications [4, 15].
They are often solved by rewriting parts of the application
in a native language such as C++ and managing large data
structures off-heap [16, 42]. Others use non-idiomatic Java
(e.g., large byte arrays), split applications into smaller VMs
or control allocation carefully to avoid GC pauses. In fact,
the latest versions of Spark and Cassandra both use such
techniques (note that our experiments use versions from be-
fore these changes). The problem with these approaches is
that they lose many advantages of using a managed language
in the first place, including safety and productivity.

There is also anecdotal evidence that some distributed
applications treat GC as a failure mode like others, and
restart the process when a full GC is necessary. The problem
with this approach is that it is only viable if GC is rare. As we
saw in Section 2.3, major GCs may occur every few minutes.

In the past, some applications also tried to control GC ex-
plicitly, using functions such as System.gc. This turned
out insufficient, since it was difficult for application devel-
opers to make good decisions based on the knowledge avail-
able. Some runtime systems hence ignore such calls today.

We have also seen a commercial application that steers
requests away from nodes paused for GC, similar to our pro-
posed strategy above [15]. Implementation of such strategies
is facilitated through language extensions such as C#’s GC
Notification API [6] that allow applications to respond to up-
coming GC pauses [62]. However, while explicitly designed
for this use, we have not seen these APIs being widely used.
Our hypothesis is that the mechanism is too low-level; pro-
grammers still need to solve distributed systems problems
such as multi-node coordination or failures. Making the im-
plementation of such strategies much easier is our key goal.

A final solution to the problem are concurrent garbage
collectors such as C4 [61] or G1 [5]. These collectors avoid
GC pauses; however, this comes at a performance cost from
constantly having to trace and compact the heap, and per-
forming extra book-keeping on every reference access to
keep collector and mutator in sync (e.g., resulting in a large
number of traps). This means that more memory bandwidth
and CPU resources are used for GC to achieve the same
GC throughput as a parallel stop-the-world collector. Fur-
thermore, most concurrent GCs still introduce short pauses
or jitter – with the very short request latencies required by
many services today, this can still be problematic. In fact, we
believe that it may be preferable to tolerate rare, predictable
stop-the-world pauses over jitter from concurrent GC.

While all these solutions work, they often result in error-
prone ad-hoc approaches, reduce productivity, redo a large
amount of work, are not portable or yield poor performance.
We believe it is time for a general solution to the problem,
and propose Holistic Runtime Systems as such a solution.



Application	Node	0 Application	Node	1

Memory	
occupancy,

State

Plan,
Reconfiguration,
State	updates

User-supplied
Policy

Ho
lis
tic
	R
un
tim

e	
Sy
st
em

Runtime	System Runtime	System

State State

Figure 4: The Holistic Runtime System approach.

3. System Overview
We now give a high-level overview of the Holistic Runtime
System approach and our implementation, Taurus. A Holis-
tic Runtime System is a distributed language runtime system
that coordinates a set of language runtimes across a cluster.
It aims to be a general solution that enables developers to de-
ploy and experiment with strategies to work around the prob-
lems from Section 2.3 while abstracting away many sources
of errors and increasing productivity.

From the perspective of the application that is running
across the runtime systems, nothing changes: the applica-
tion processes are still isolated, and there is no shared heap.
Traditionally, each runtime system would now make deci-
sions independently, based on its settings. For example, the
Hotspot JVM allows users to configure the GC, generation
sizes, tenure rates, and many others. In a Holistic Runtime,
these decisions are made globally for the entire distributed
workload, through a configurable policy provided by the ap-
plication. We show how policies are defined in Section 4.

Coordination works by dividing time into epochs of vary-
ing length. At the end of each epoch, a leader executes the
policy. The policy considers the state of all the nodes and
produces a plan that contains runtime events to be executed
during the next epoch, as well as information to be shared
between the nodes. This plan is then distributed to the other
nodes and executed in a decentralized manner (reminiscent
of the approach taken in systems such as Tesselation [27] for
decentralized scheduling). At the end of the epoch, all nodes
report back to the leader with any state updates, so that the
next epoch can begin (Figure 4).

Holistic Runtimes enable a wide range of coordination
patterns, while abstracting away the challenges of maintain-
ing the distributed system, failure tolerance, time synchro-
nization and interfacing to the runtime system. In Taurus, our
prototype, we use these mechanisms to implement and in-
vestigate GC coordination. However, the same mechanisms
could be used to coordinate JITs, share profiling data, reduce
startup times or co-tune applications on the same node.

3.1 Design Decisions and Goals for Taurus
One of our primary goals for Taurus is compatibility. While
it would be possible to design an entirely new system (and
potentially language) from the ground up, it would be chal-
lenging to bring up workloads for it: many existing work-

loads require a fully standard-compliant runtime system, and
even close approximations (such as Apache Harmony [2]) do
not work reliably. We therefore decided to base our work on
the OpenJDK Hotspot JVM, which is the reference imple-
mentation of Java and runs the vast majority of software.

Another important goal is usability. For Taurus to be use-
ful, its deployment must be substantially easier than reimple-
menting coordination at the application level. We therefore
designed Taurus to be a drop-in replacement; the goal is that
the user only has to install a different java executable and
everything else behaves the exact same way as before. Be-
hind the scenes, this executable calls into Hotspot and brings
up Taurus, which then connects the runtime systems.

A final goal is failure isolation. For the system to be
adopted, it must also not substantially increase the probabil-
ity of failure in any part of the system. For this reason, Tau-
rus has fault tolerance built in and can tolerate node-failures
by electing leaders and migrating state using a distributed
consensus protocol (Section 5.3). This is an important ar-
gument for foregoing a model that supports a single-system
view (which might reduce failure isolation between nodes).

We are also concerned about failure propagation into
the JVM. We therefore avoid direct changes to the Hotspot
code base but instead interact with the JVM through its
management interface. Hotspot provides a rich interface to
install libraries and performance monitors within the JVM,
which can communicate to the outside world. Taurus itself is
implemented as a co-process for Hotspot – this ensures that
most errors in Taurus are staying outside the JVM process
barrier, and failures do not bring down the JVM.

3.2 Components of the System
Figure 5 shows the high-level components of Taurus. With
Taurus installed, every JVM instance is augmented with
a monitor process at startup, to form a Holistic Runtime
Instance. The monitor connects to the JVM’s management
interface, which allows it to monitor memory occupancy and
other internals, and trigger JVM operations (Section 5.1).
The monitor also opens a communication channel to the
application space of the JVM. This allows the application to
exchange information with Taurus (Section 3.4). Using this
feature is optional and requires modifying the application.

On startup, the monitor instantiates a client, which ex-
poses an RPC interface that other nodes can connect to (Sec-
tion 5.2). Monitors also connect to a consensus layer that
provides us with a set of replicated, consistent storage. This
layer is used for features such as leader election or node dis-
covery (Section 5.3). We use an implementation of the Raft
consensus protocol [51] – we assume that this layer is avail-
able on startup, but it could also be launched automatically.

When launching a Holistic Runtime Instance, the applica-
tion can select a policy, usually through a new set of special
command line flags (we use the -XX:HVM:flag=value
namespace, which is not used by Hotspot; adding new -XX
arguments does not break J2SE-compliance).



Hotspot
JVM

Hotspot
JVM

Application	
Node	0

Monitor Monitor

Application	
Node	1

Interface Interface

Hotspot
JVM

Monitor

…

…

Holistic	Runtime	Instance Holistic	Runtime	Instance

Client Client Client

Raft	Consensus	Layer	(Leader	election,	Stores	Policy	State)

Co
or
di
na
tio

n	
Gr
ou
p

Leader
Policy

Figure 5: The high-level components of Taurus.

3.3 Policy Execution
Policies are the core of Taurus: they describe the strategies
for coordinating the different runtime systems. Taurus’s poli-
cies are written in a high-level DSL we describe in Section 4.

Policy execution in Taurus follows a two-level approach.
Using the consensus layer for all coordination in the entire
cluster would result in scalability issues, and prevent us from
fully exploiting fast rack-level interconnects. Instead, Taurus
allows multiple policies to be active within the same cluster
and operate on what we call a coordination group.

A coordination group is a subset of runtime systems that
is subject to a policy at a given time (Figure 6). Every run-
time system can be a member of at most one coordination
group, and policies can choose to add or remove unclaimed
runtimes from their group. Coordination groups operate in-
dependently from each other and the consensus layer is only
used to handle group membership, leader election and recov-
ery (we assume such changes to be infrequent). This means
that a Holistic Runtime System can manage a large set of
machines while fine-grained coordination occurs for subsets
of nodes, such as those within a rack or an application.

A policy is a pure function that takes as input the state
of the coordination group (e.g., memory occupancy of all
runtime systems, or user-defined state as described in Sec-
tion 3.4) and produces a plan that contains runtime events for
the next epoch and state updates. It also contains coordina-
tion group changes (e.g., runtime systems to add or remove).

Each coordination group has an elected leader; all other
nodes are followers. The leader establishes a synchronized
time base for the group and is responsible for executing the
policy once every epoch. When a runtime system instance
is launched with a policy selected, it will try to become the
leader for this policy by contacting the consensus layer. If
there is no leader yet, the node will become the leader, spawn
off a leader thread, and start executing the policy. Otherwise,
it will become a follower and connect to the existing leader.

By using this approach, we address the scalability issues
since no global consensus is necessary within the coordi-
nation group; the only scalability bottleneck is the leader,
which needs to receive one sample from each member of
the group per epoch and distribute the plan (in Section 6.4.3,
we show that this scales well to at least 180 nodes). Fur-

Coordination	Group	#1
Policy	A

JVM	#2

JVM	#1

JVM	#3

JVM	#5

JVM	#6

JVM	#4

JVM	#10 JVM	#7

JVM	#9
JVM	#8

Coordination	Group	#2
Policy	B

Figure 6: Cluster divided into multiple coordination groups.
Orange nodes are the leaders, which execute the policy and
distribute the results to the remaining nodes in the group.

thermore, failures in the coordination group are “softer” than
failures in the global consensus layer. While they may lead
to performance degradation, missing a few epochs will not
cause a failure of the application running on Taurus – they
can be fixed up throughout later epochs (work in cluster
scheduling shows that such an optimistic approach can work
well in a distributed setting [58]). The downside is that since
we are not relying on the consensus layer within coordina-
tion groups, we need to be able to recover from both leader
and follower failures (Section 5.4).

3.4 Communication with the Application
In addition to coordination at the runtime system level, Tau-
rus can optionally communicate with the application itself.
This is useful to implement policies such as the Steering pol-
icy from Section 2.3.2, where the runtime system needs to
communicate to the application which nodes to avoid. The
abstraction we chose is a shared set of key-value pairs visi-
ble to both the runtime system and the application space.

For this purpose, each monitor installs a globally vis-
ible class in the application space that provides thread-
safe static methods HVM.getKeyValuePair(k) and
HVM.setKeyValuePair(k,v). To use them in an ap-
plication, it suffices to add a .jar file to the classpath.

The executing policy receives as part of its input the full
set of key-value pairs on all nodes of the coordination group,
and can produce (as part of its plan) updates to key-value
pairs on any node. This allows policies to implement a wide
range of communication patterns with the application.

3.5 Reconfiguration
When launching a new policy, its coordination group only
contains one node. The policy can query the list of available
runtimes in the cluster, and whether they are a member of
any other group. They can then select non-claimed nodes to
add to their coordination group as part of the plan. These
nodes join during the next epoch, and are considered during
the next execution of the policy (conflicts are avoided by
making policy executions atomic with respect to each other).
Node terminations or failures are visible in a similar way: the
policy can see a node that has timed out and can remove it
from its coordination group (Section 5.4).



policy AutoAdd {

run(Set<Runtime> s = runtimes) {

foreach(Runtime r : s) {

if (r.status == UNASSIGNED) {

plan <− ReconfigureAddMember(r);

}}}}

(a) Policy that automatically adds unassigned runtimes.

policy STU {

extern double cutoff = 10.0;

run(Set<Member> stu = members,

Set<Member> collect = members) {

if (!(stu.filter([Member m : (! m.busy) &&

m.memory.old > cutoff]).empty())) {

plan <− MajorGC(collect);

}}}

(b) Stop-the-Universe Policy that performs a full GC for all
members in collect if at least one of stu has reached a
memory occupancy of cutoff.

policy Example {

import STU(cutoff=90.0);

import AutoAdd();

run() {

STU(members.filter([Member m:

m.runtime.tag == "gc"]), members);

AutoAdd(runtimes);

plan <− EpochLength(200.0); //ms

}}

(c) Composing policies: Example imports and calls into
STU (with two dynamic parameters), then AutoAdd.

Figure 7: Examples of policies written in our DSL.

4. Policy Description Language
To facilitate the development of policies (and therefore adop-
tion), we designed a DSL for policy descriptions (Figure 7).

Each policy declaration (which gives the policy a unique
name) contains a run block that describes the policy func-
tion and defines policy parameters. This block contains a
sequential program that can access any state visible to the
system and builds up a plan. However, instead of a fully
Turing-complete language, we do not provide general for or
while loops but only foreach loops over finite sets; this
ensures that policies always terminate, which prevents the
leader getting stuck (a key advantage of using a DSL).

In addition to the primitive types double, int and
string and two parameterized collection types Set and
Map, the language provides two composite types to describe
runtime systems (two types are required to distinguish be-
tween runtime systems that are under the control of the pol-
icy and those registered but not under the policy’s control):

policy PingPong {

state Map<Member,int> prev = 0;

run() {

foreach (Member m : members) {

int pp = m.kv("pingpong").toInt(0);

if (prev.get(m) != pp) {

plan <− SetKV(m, "pingpong", pp+1);

prev.set(m, pp+1);

}

}

plan <− EpochLength(200.0);

}}

Figure 8: Example policy using key-value pairs and policy
state. The policy monitors a key-value pair and increases it
when it sees a change; the application does the same.

• Runtime: A runtime that is part of the Holistic Runtime
but not necessarily the current coordination group. This
type is used for group management (e.g., adding/remov-
ing). It contains fields such as the runtime’s server, com-
mand line, tags set at startup, and group membership.

• Member: A member of the policy’s coordination group.
This type is used to actually interact with the runtime
system. It contains fields for memory occupancy of the
different subspaces, GC statistics, whether the node is
unresponsive (busy) and KV pairs.

Note that the Members are a subset of the Runtimes;
given a Member m, the corresponding Runtime can be
accessed with m.runtime. The sets of all runtimes and all
members can be accessed using global keywords runtimes
and members. Note that the runtimes set can become
large, which is why monitors cache it instead of updating
it from the consensus layer every epoch (comparing only a
version number to check for updates).

The language allows filtering sets with a predicate. An
example can be found in Figure 7b. In this case, a filter
predicate is used to determine the set of members with a
certain memory occupancy, and check whether it is empty.

We provide a special construct of the form plan <-
Action(...) to add commands to the policy’s plan. A
plan is effectively the policy’s return value and contains a
set of commands to execute on each runtime system. Some
commands take parameters, such as a subset of members
or runtimes they apply to (e.g., adding a set of runtimes,
performing GC on a set of members). By repeatedly using
this construct, the policy creates the plan for the next epoch.

A member’s key-value pairs are accessed through a kv
field in Member, and updates to them are added to the plan
(Figure 8). Key-value pairs are stored as strings and it is
often necessary to convert values to or from primitive types
such as integers. To prevent error conditions in the case of
malformed strings, all such conversions need to be provided
a default value that is used in case the conversion fails.



Finally, policies support state that is kept around between
epochs using the state keyword (Figure 8). Note that all
state variables also need a default value that is used in case
of errors (e.g., if a key is not found in a Map, or on failure).

4.1 Configurability and Composability
We hypothesize that most workloads will require varia-
tions of a small set of basic policies, potentially with some
application-specific extensions (Section 6.1). Composability
is therefore an important feature in our Policy DSL: it allows
us to build a repository of basic policies over time, and com-
bine them into application-specific solutions. To achieve this
flexibility, policies need to be configurable and composable.

We allow policies to be included into other policies
through an import statement. This will include the pol-
icy and allows it to be called within the run block. Fig-
ure 7c shows an example of this. Policies are parametrizable
with two types of parameters: dynamic and static parame-
ters. Static parameters are defined at the time of import and
do not change at runtime (these are the parameters defined
as “extern” outside the run block). Dynamic parameters are
given to the policy whenever it is called from within an-
other policy. Figure 7b shows examples for both types of
parameters: cutoff is static, while stu is dynamic. All
parameters can have default values.

4.2 Policy Compilation
Our DSL is embedded into C++11, and we reuse many C++
features including numerical and logical operations, if state-
ments and stream operators. A recursive-descent parser writ-
ten in Python transforms our policy code into C++ code,
which is then compiled into a dynamic library. The parser
does not split the code down to individual tokens but only
into pieces that can be directly transformed into C++ (e.g.,
the predicate within a filter). We then find and replace any
DSL-specific keywords and idioms with their C++ equiva-
lents (considering scopes, strings, etc.). Policies are trans-
formed into classes, foreach loops into iterators and filter
predicates into C++11 lambda expressions. We use C++11
move semantics to chain filters without copying data.

5. Implementation
After the high-level design, we will now present implemen-
tation details of Taurus. Taurus is entirely written in C++11,
to avoid GC-induced pauses in the system itself.

5.1 JVM Interface
The monitor connects to Hotspot through three different
interfaces (Figure 9). It queries memory occupancy infor-
mation through jstat, which exposes the JVM’s perfor-
mance counters by writing them to a shared page that can
be mapped by a different process (by default, Hotspot up-
dates these counters every 50ms; as we require a finer gran-
ularity, we set the interval to 1ms instead). This means that

Hotspot
JVM

Monitor

Holistic	Runtime	Instance

Memory	occupancy
GC	statistics
Uptime

Trigger	GC Application
Holistic	
Runtime	
Agent

ZMQ	IPC	channelJNI jstat jcmd KV
Pairs

Figure 9: Interface between Hotspot and the monitor.

the monitor can access this data without blocking on the
JVM. Commands in the JVM (primarily triggering of Ma-
jor GC) are performed through the jcmd interface, which
allows calling into the JVM to trigger activities (it may stall
if the JVM is unresponsive, such as in a GC pause). Finally,
key-value pairs are exposed to the Java application through a
Java agent that is installed into the JVM’s application space
at start-up. This agent connects to the monitor through an
IPC mechanism provided by the ZMQ library [37], which is
the same library we use for inter-node communication. The
agent then updates key-value pairs in the HVM class (Sec-
tion 3.4), which is accessible from the application. The agent
is also responsible for triggering minor GCs: since Hotspot
does not support this, the agent can force a minor GC by
allocating unreachable objects until the young generation
is full (using the MemoryPoolMXBean interface to deter-
mine how much memory it needs to fill).

5.2 Inter-node Communication
Inter-node communication is implemented using a simple
RPC protocol. We use ZMQ [37] for communication, since
it gives us a higher level of abstraction than regular sockets
(e.g., managing concurrency and high-level communication
patterns), and supports low-latency communication over In-
finiband. Our RPC protocol is using Protocol Buffers [64].

Adding a node is simple: The leader (prompted by its pol-
icy) sends a reconfigure request to the node’s client, which
will then send a request to join the leader’s coordination
group. The leader then confirms the join request and sends
the plan of the currently active epoch to the client, after
which the node is part of the group. Leader and client also
repeatedly exchange timestamps through a separate connec-
tion, to determine the drift between them (no special hard-
ware is needed for this). From then on, all timestamps are
expressed relative to the leaders’s clock.

5.3 Consensus Layer
We use LogCabin [12, 51], Stanford’s Raft implementation,
as our consensus layer. We run three LogCabin instances,
and runtime systems can connect to any of them. LogCabin
provides a small amount of consistent, highly replicated
storage. We use this storage to track the set of instances
currently registered with Taurus, as well as active policies.
The set of instances has a version number; for performance,
nodes cache the instances locally and only compare against
the version number once per epoch.



Node	1

Node	2

Node	3

Node	4

Raft Epoch 1 Epoch	2

Execute	Plan

Execute	Plan

Execute	Plan

Distribute	Plan
Leader

Send	state	updates

Policy

Write	snapshot Write	snapshot

Start	of	Epoch	1 Start	of	Epoch	2

Execute	Plan

Execute	Plan

Execute	Plan

✖
Follower	Failure

Node	4
Follower	Timeout

✖
Leader	Failure

Node	3	Leader	Timeout

Try	to	be-
come	leader

Try	to	be-
come	leader

✔

✗

Policy

Restore	snapshot

Figure 10: A sample policy execution in Taurus. When a fol-
lower fails, the policy sees it as unavailable. When the leader
fails, another node becomes leader, restores the policy from
the last executed epoch, and continues (marking all other
nodes as unavailable for the next epoch, before stabilizing).

When launching a new JVM, its monitor will connect
to LogCabin and create an entry for its runtime system in-
stance. This includes information such as its command line
options and address/port (the monitor selects a free port au-
tomatically on startup). Next, it will try to launch a policy
and become the leader for it, if requested through a com-
mand line option. When the policy runs, it can detect other
instances in the cluster and add them to its coordination
group. (To help policies distinguish between multiple dis-
tributed applications, it is possible to supply a flag with a
unique application ID to all JVMs belonging to one applica-
tion; the first node with this ID will become the leader and
runs the policy, which adds the other nodes.)

5.4 Execution & Failure Handling
Once a leader has brought up the policy, it enters a loop that
consists of three stages, visualized in Figure 10:

1. Distribute the current plan to all nodes in the coordination
group (at the beginning, the plan is empty).

2. Followers execute the instructions in the plan, then atom-
ically take a sample of their state, and send it to the leader.
If they cannot take a sample in time, they will send a re-
sponse that they are “busy” (which can happen if the JVM
is in a GC pause or if there is contention in the system).

3. The leader collects state updates from all followers. Once
the epoch has ended, it marks all nodes from which it
has not received an update as “unavailable”, executes the
policy, produces a new plan, and sends it to all nodes
(including unavailable ones; failure is discussed below).

The length of the epoch is set by the plan itself and can
adapt to the circumstances (e.g., if the workload is exhibiting
irregular allocation rates, the policy can decide to decrease
the epoch to react more quickly to changes). However, in this
case policy authors have to be careful about control loops.

Leader failures are tolerated by storing the policy meta-
data (including the last plan) to the consensus layer every
epoch (i.e., the epoch is made persistent before sending
out a plan). All followers have a timeout by which they
expect the next plan to arrive. If no plan arrives, they assume
that the leader has failed and will attempt to become leader
themselves by trying to write the entry of the current epoch.
If it has been written before, it means that the original leader
is either still alive and the message was delayed, or that some
other node has become leader in its place. In that case, the
node will continue as a follower. If the node succeeds in
writing the policy entry, it becomes the next leader, pulls the
policy data from the consensus layer, and starts executing.

This approach moves all the failure handling into the con-
sensus layer, simplifying fault tolerance. At the same time, it
puts little load on the consensus layer in the absence of fail-
ures (requiring only the leader to access it, once per epoch).
This maintains the advantages of the two-level approach.

6. Evaluation
We now demonstrate how Taurus coordinates GC in real-
world applications and characterize its coordination perfor-
mance and overheads through microbenchmarks.

We performed most of our evaluation on a 16-node
cluster connected with 40 GbE using Mellanox dual port
MCX314A-BCBT cards. Each node has an Intel IvyBridge
E5-1680V2 3.0GHz CPU with 8 cores (16 hardware threads)
and 64GB RAM. In addition to our workloads, the cluster
ran YARN, as well as HDFS and Tachyon file systems. To
show generality and scalability of the system, we also run
a scalability microbenchmark on a set of 200 g1-small
instances on Google Compute Engine.

All nodes are running Linux 3.13.0. We run a snapshot
of LogCabin from 4/10/15 with the Segmented storage
module on a RAM disk (as we do not require persistence
across machine failures). We use OpenJDK 1.7.0_75, Ze-
roMQ 4.0.5 and Google Protocol Buffers 2.6.1. Unless noted
otherwise, we used the default settings for all applications.

6.1 GC Policies & Applying Taurus to Applications
To make efficient use of Taurus, it is important to apply
policies that address the specific GC problems of a given
application. Looking at a range of workloads, we discovered
that most GC policies we found could be expressed as a
combination of three fundamental strategies:

• Schedule: Trigger GC at suitable/convenient times.
• Redirect: If a task can be handled by multiple nodes,

choose a node that is not unavailable due to GC.
• Hand-off : If a node has sole responsibility for a task or a

piece of data, hand it to another node before GC.

We dub these fundamental strategies S, R and H. Looking
at published literature and our own work, we can describe a
wide range of policies in terms of these strategies:



Schedule Redirect

Hand-off

Cassandra
(§6.3)

ZooKeeper/
Etcd [62]

Spark
PageRank
(§6.2)

Application
Servers	[56]

Backup/Cinnober	 [15]

Figure 11: Mapping of GC policies to base strategies.

1. Stop-the-Universe (S). Synchronize GCs between all
nodes in the distributed system. This strategy is useful
for iterative batch workloads (Section 2.3.1).

2. GC-when-Idle (S). Trigger GC during a period of idle-
ness. E.g., for in-memory computations, perform GC in
the backing data store (e.g., HDFS) during computation.

3. Steering (R). In a system where multiple servers can
handle requests (e.g., sharded search engines such as
SOLR [60], or replicated services), steer requests away
from nodes close to GC. Steering can happen within
applications (e.g., picking replicas) or at a load-balancer.

4. Staggering (S). In a system that requires quorums of
replicas for consistency, ensure that only one of the repli-
cas is performing GC at any given time.

5. Backup (SR). Have two instances of a component, but
use only one of them and trigger GC on the other [15].

6. Leadership Transfer (H). When the leader of a system
is about to stall for GC, use the system’s recovery mech-
anism to hand off leadership to another replica [62].

7. Timeout Extension. Stop connections or leases from
timing out during GC pauses (a common problem [18]).

Applications can combine these policies to fit their needs.
Figure 11 shows examples: Spark (Section 6.2) benefits from
Stop-the-Universe (S), Cassandra (Section 6.3) uses Steering
& Staggering (SR), a Zookeeper-like system [62] has been
shown to benefit from a Steering, Staggering & Leadership
Transfer (SRH), and replicated application servers [56] have
been shown to benefit from Steering (R) alone.

We note that there is a connection between the fundamen-
tal policies and their implementation complexity: S often-
times requires no changes to the application, R does require
changes but those are minimal if it is possible to modify the
replica selection algorithm already available in applications,
while H can be more work, unless the application already
has a hand-off mechanism as part of its failover handling.

Taurus enables and simplifies the implementation of these
policies, and we hypothesize that they provide a basic set that
can be combined to cover most applications. Using the two
examples from Section 2.3, we now show how Taurus can
be used to improve these workloads by implementing three
of the fundamental policies above.

> 5 ms > 20 ms > 50 ms
UPDATE Query Latency

0

5000

10000

15000

20000

25000

30000

N
um

be
r o

f Q
ue

rie
s

Vanilla
Steer
Steer+Snitch
Steer+Snitch+Stagger

> 5 ms > 20 ms > 50 ms
READ Query Latency

0

20000

40000

60000

80000

100000

N
um

be
r o

f Q
ue

rie
s

Vanilla
Steer
Steer+Snitch
Steer+Snitch+Stagger

Figure 12: Cumulative latency distributions of the slow-
est 100K queries (99.9 percentile) of a representative run.
Stacked bars represent the number of GCs during a request.

0.25 0.5 1 2 4 8 16 32 64 128
UPDATE Operation time (ms)

96.0%

97.0%

98.0%

99.0%
99.5%

100.0%

C
um

ul
at

iv
e 

tim
e

Vanilla
With Taurus

0.25 0.5 1 2 4 8 16 32 64 128
READ Operation time (ms)

96.0%

97.0%

98.0%

99.0%
99.5%

100.0%

C
um

ul
at

iv
e 

tim
e

Vanilla
With Taurus

Figure 13: Fraction of total execution time (sum of all query
latencies) spent in requests of at least a certain length.

6.2 Case Study: Apache Spark
As an example for a batch workload, we used the Spark
PageRank workload from Section 2.3.1. As discussed there,
this workload benefits from a Stop-the-Universe (STU) pol-
icy, and implementing it in Taurus is simple. In fact, all parts
have already appeared in the paper: the improved PageRank
workload in Figure 2b is the result of using the STU policy
from Figure 7. We used Spark 1.1.1 on 16 nodes with 32GB
heaps. No modification to Spark was required, and even this
simple policy reduced execution time by 21%.

6.3 Case Study: Apache Cassandra
As an example for an interactive workload, we improve Cas-
sandra tail-latencies (Section 2.3.2). We run a YCSB snap-
shot from 3/11/15 against Cassandra 1.0.6 with a replication
factor of 3 and a cluster size of 8. We run workload A on a
keyspace with 10M entries for 100M queries (50s warmup).
We chose a 32GB heap with a 4GB young generation.

The average latencies were 173.6 us for updates and
522.8 us for reads, but some requests were over 100×
slower: Figure 12 shows the distribution of the slowest 100K
queries (>5ms latency), which is the tail from the 99.9 per-
centile. Our goal was to remove as many of the stragglers
(>20ms) as possible. To this end, we applied multiple of the
GC coordination policies from Section 6.1:

Request Steering (Steer). Requests in Cassandra can be
sent to any node. A main source of stragglers are nodes that
stall for GC while processing a request. To avoid this, we
expose all nodes that are close to GC to the load balancer
(in our case the YCSB client). We implemented a policy that
monitors the young-generation occupancy of each node ev-
ery 10ms epoch and maintains a key-value pair per node.
When a node’s occupancy reaches 80%, the key-value pair is
set to 1. YCSB then checks these key-value pairs before dis-



patching each request. If the key-value pair is 1, YCSB sends
the request to a different node (we hence maintain additional
connections to each Cassandra node). This eliminates most
update stragglers over 20ms but does not improve reads (Fig-
ure 12). This is because updates can be delayed while reads
need to contact a quorum of replicas.

Snitch Steering (Snitch). In order to serve a read query,
the node executing the query has to assemble a quorum of
replicas. This quorum is chosen based on a Snitch, a feature
in Cassandra that is normally used to describe the data center
topology. We modified Cassandra’s dynamic snitch to read
the key-value pairs and select replicas that are not close to
GC. Figure 12 shows this improves reads substantially.

Staggering (Stagger). Additional read stragglers stem
from multiple GCs occurring at the same time. To address
this, we modified the policy to ensure that only one node is
performing GC at any time. Each epoch, we trigger a mi-
nor GC on the node with the highest memory occupancy
over 80%, if any, and trigger no other GC before it has fin-
ished. For our 8-node cluster, this is sufficient. Larger clus-
ters could stagger GC by triggering simultaneous GCs on
nodes 3 steps apart in the Cassandra ring (to avoid stalling
multiple replicas belonging to the same key).

The overall impact of all coordination techniques is shown in
Figure 13. The y axis shows the fraction of total time spent in
requests of at least the latency on the x axis (averaged over
10ms intervals). As our coordinated version is well to the
left of the original (note the log scale), we eliminate a large
fraction of stragglers. On a per-request basis, the 99.99%ile
latency improves from 65.7 ms to 33.8 ms for reads (40.7
ms to 10.1 ms for updates) and the 99.999%ile from 128.6
ms to 54.6 ms for reads (67.7 ms to 21.0 ms for updates).

Note that we use an untuned configuration of Cassandra,
with a large heap and young generation. In practice, Cassan-
dra deployments are heavily hand-tuned. We argue that with
a system such as Taurus, tuning becomes less important.

6.4 Microbenchmarks
We now characterize the coordination performance, scala-
bility and overheads of Taurus using microbenchmarks.

6.4.1 Coordination Granularity
We are first interested in the granularity of coordination
that Taurus enables, specifically the minimum sustainable
epoch length. We ran Taurus on a Java program that sleeps
for one second at a time in an infinite loop, and ran it for
different policies and epoch lengths (Figure 14). We report
how often clients fail to report back by the end of the epoch;
this indicates that the epoch was too short. In all cases, we
let the system reach a stable state before performing our
measurements. Error bars here and later are the σ of 5 runs.

8-Null and 16-Null are a policy that does nothing and
only checks for new runtimes (on 8 and 16 nodes). In both

0 5 10 15 20 25
Epoch length (ms)

0

20

40

60

80

100

M
is

se
d 

ep
oc

hs
 (%

) 8-Null
16-Null
GC
100 KV

Figure 14: Missed epochs depending on the epoch length.

0 50 100 150
Number of Nodes

0

2

4

6

8

10

M
in

im
um

 E
po

ch
 (m

s) 0.1 % 1.0 % 5.0 % missed epochs

Figure 15: Scaling to 180 Google Compute Engine nodes.

cases, no epochs were missed until going below 2ms, indi-
cating the minimum sustainable epoch length is 1-2ms (for
the scale we looked at). Since the minimum jstat sampling
rate of the Hotspot JVM is 1ms, this is sufficient.

We also experimented with two other policies: KV sets
100 key-value pairs every epoch on each node – this stresses
communication and increases the minimum epoch length to
20ms. We also ran a policy that triggers a full GC every 10s
(GC), on a workload that always allocates data. As expected,
this misses a constant fraction of epochs due to GC pauses.

6.4.2 Scalability
To demonstrate that Taurus scales to a large number of nodes
in a more realistic data center deployment, we ran the same
benchmark on a set of up to 180 Google Compute Engine
g1-small instances. We performed a run with a policy
that constantly measures the number of missed epochs and
adjusts their length in a binary search fashion until a target
fraction of missed epochs is reached (note that in a large de-
ployment, there are always going to be some missed epochs).

Figure 15 shows that even in such a deployment with-
out Infiniband, Taurus performs well and can achieve epoch
times below 10ms. With ping latencies of around 300us (and
LogCabin running on a separate set of nodes), we believe
these results to be reasonable. As we saw in Section 6.3, a
10ms epoch is sufficient even for fine-grained coordination
in latency-sensitive systems. In addition to helping us deter-
mine the minimum epoch length, this experiment also shows
an example of a policy that automatically adjusts the epoch
length (a good strategy to make policies more portable).

6.4.3 Performance Breakdown
We are now interested in how different components of the
execution contribute to the epoch length. Figure 16 shows
the different contributors. For the leader, we ran a policy
that reads out all nodes’ GC statistics while varying the
coordination group size (with four JVMs per node). For
the followers, we chose the KV policy from Section 6.4.1,
varying the number of key-value pairs.



16 32 48 64
Coordination Group Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
xe

cu
tio

n 
tim

e 
(m

s)

Policy Log Msgs

(a) Leader Execution

0 50 100 150
Number of Key-Value Pairs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
xe

cu
tio

n 
tim

e 
(m

s)

Process KV Sample

(b) Follower Execution

Figure 16: Impact and scalability of the different compo-
nents of policy execution, for both the leader and followers.

avrora h2 jython pmd sunflow tradebeans
Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e 
w

rt 
O

pe
nJ

D
K

Client Leader

Figure 17: Overhead of running Dacapo with Taurus.

The leader’s execution limits the coordination granularity
as much as the epoch length. The bottleneck appears to
be the access to LogCabin: snapshotting the epoch takes
about 400us on average (with a LogCabin instance on the
leader’s node). The policy takes a similar amount, as it needs
to perform one access to the LogCabin cluster as well, in
order to check version numbers. Sending out plans is a small
fraction, and scales linearly to the coordination group size.

For followers, the execution time is currently dominated
by receiving, decoding and applying the instructions of the
plan (which grows with the number of key-value pairs). It is
likely that a better plan format could reduce these overheads.
Neither sampling the JVM nor communicating Key-Value
pairs to the JVM appear to be a substantial bottleneck.

6.4.4 Overhead
To determine the overhead of Taurus, we used the Dacapo
benchmarks [22] (we chose the subset that worked correctly
with OpenJDK 7). We compare the performance degrada-
tion both for followers and leaders. Taurus does not intro-
duce substantial overheads, at most 3.0% (Figure 17). Given
that JVMs are known to be sensitive to changes in the en-
vironment and that we introduce many such changes (e.g.,
adding an agent, using management interfaces, changing the
sampling interval), we believe most of the differences in per-
formance to be noise (e.g., the speed-up for pmd).

7. Related Work
There has been a large amount of work on GC – Jones and
Lins [40] provide a comprehensive survey. Recently, there
has been renewed interest in GC in the Big Data setting [31,
33, 45, 46, 54]. Proposed solutions range from approaches
similar to our request steering [15, 31, 55, 56, 62] to region-
based memory management for avoiding GC [33, 50], to
specialized collectors [32, 61]. Our approach is different in

that we provide a general mechanism to implement many of
these approaches, instead of a new approach in itself.

The Holistic Runtime System has similarities to previous
work on Distributed JVMs [20, 21, 47, 70, 71]. However,
these JVMs are targeted at monolithic applications, not dis-
tributed workloads. There are also projects that share some
of our goals: Forseti [24] investigates holistic heap sizing.
The MVM [41] looked at running multiple applications in
the same JVM. A2-VM [59] cooperatively schedules Java
applications across machines, making the JVM and its ser-
vices resource-aware to enable cluster-wide thread schedul-
ing based on policies (which bear some resemblance to Tau-
rus’s policies). Finally, Terracotta [23] deploys Java appli-
cations across JVMs through clustering. The last two differ
from Taurus in that they provide a platform for writing dis-
tributed workloads rather than a transparent support layer.

Taurus also has similarities with work on cluster sched-
ulers [36, 58]. While they schedule and coordinate work-
loads as well, they do so at a much coarser granularity. How-
ever, it is possible that a system such as Taurus could even-
tually be integrated into the cluster scheduler, to reuse its
available information and failover mechanisms.

8. Future Work and Conclusion
We presented the design of a Holistic Runtime System to
coordinate distributed applications in data centers. We in-
troduced Taurus, a prototype of such a system that can be
used to coordinate GC. Taurus is a JVM drop-in replace-
ment, runs unmodified real-world applications, requires no
modifications to the underlying runtime system and provides
a simple DSL to implement policies. Our goal is to enable
developers to implement their own policies and use Taurus
as a research vehicle for exploring coordination strategies.

We believe that Taurus can be used beyond GC. Specifi-
cally, it could be used for distributed monitoring and profil-
ing, coordinating code generation and reducing interference
between JVMs. It would also be possible to integrate Tau-
rus with other runtime systems than the JVM, to coordinate
workloads across different programming languages.

Acknowledgements
We would like to thank Michael Armbrust, Peter Kessler, Kay Ousterhout,
Philip Reames, Mario Wolczko, Reynold Xin and the anonymous reviewers
for their feedback on this and earlier versions of this work. Thanks are owed
to Peter Bailis for pointing out the snitch mechanism in Cassandra, and to
Daniel Goodman for coining the term "Stop-the-Universe".

Precursor work was done at Oracle Labs, Cambridge. Research at UC
Berkeley was partially funded by DARPA Award Number HR0011-12-2-
0016, DOE grant #DE-AC02-05CH11231, the Center for Future Architec-
ture Research, a member of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA, and ASPIRE Lab indus-
trial sponsors and affiliates Intel, Google, Huawei, LG, NVIDIA, Oracle,
and Samsung. Any opinions, findings, conclusions, or recommendations in
this paper are solely those of the authors and do not necessarily reflect the
position or the policy of the sponsors.

Martin Maas, the first author, is dedicating this paper to his newlywed
wife Yucy. “Taurus” is her zodiac sign.



References
[1] “The Apache Cassandra Project.” [Online]. Available:

http://cassandra.apache.org/

[2] “Apache Harmony.” [Online]. Available:
http://harmony.apache.org/

[3] “ART vs Dalvik - introducing the new Android
runtime in KitKat.” [Online]. Available:
http://www.infinum.co/the-capsized-eight/articles/art-
vs-dalvik-introducing-the-new-android-runtime-in-
kit-kat

[4] “Credit Suisse Case Study.” [Online]. Available:
http://www.azulsystems.com/customers/creditsuisse

[5] “G1: One Garbage Collector To Rule Them All.”
[Online]. Available:
http://www.infoq.com/articles/G1-One-Garbage-
Collector-To-Rule-Them-All

[6] “Garbage Collection Notifications.” [Online].
Available: https://msdn.microsoft.com/en-
us/library/cc713687(v=vs.110).aspx

[7] “Google App Engine: Platform as a Service.”

[8] “Hack: a new programming language for HHVM.”
[Online]. Available:
https://code.facebook.com/posts/264544830379293/
hack-a-new-programming-language-for-hhvm/

[9] “HDFS Issue 7244: "Reduce Namenode memory
using Flyweight pattern".” [Online]. Available:
https://issues.apache.org/jira/browse/HDFS-7244

[10] “Inside .NET Native (Channel 9).” [Online]. Available:
http://channel9.msdn.com/Shows/Going+Deep/Inside-
NET-Native

[11] “JSR-000121 Application Isolation API
Specification.” [Online]. Available: https:
//jcp.org/aboutJava/communityprocess/final/jsr121/

[12] “LogCabin (GitHub).” [Online]. Available:
http://github.com/logcabin/logcabin

[13] “Microsoft Windows Azure.” [Online]. Available:
http://www.windowsazure.com/

[14] “On Garbage Collection.” [Online]. Available:
http://hhvm.com/blog/431/on-garbage-collection

[15] “Predictable Low Latency: "Cinnober on GC
pause-free Java applications through orchestrated
memory management",” Tech. Rep. [Online].
Available: http://www.cinnober.com/sites/cinnober.
com/files/news/Cinnober%20on%20GC%20pause%
20free%20Java%20applications.pdf

[16] “Project Tungsten: Bringing Spark Closer to Bare
Metal.” [Online]. Available:
https://databricks.com/blog/2015/04/28/project-
tungsten-bringing-spark-closer-to-bare-metal.html

[17] “Twitter Shifting More Code to JVM, Citing
Performance and Encapsulation As Primary Drivers.”
[Online]. Available:
http://www.infoq.com/articles/twitter-java-use

[18] “ZooKeeper SessionExpired events,” in Apache HBase
Reference Guide. Apache HBase Team. [Online].
Available: http://hbase.apache.org/book.html

[19] O. Anderson, E. Fortuna, L. Ceze, and S. Eggers,
“Checked Load: Architectural Support for JavaScript
Type-checking on Mobile Processors,” in Proceedings
of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, 2011.

[20] J. Andersson, S. Weber, E. Cecchet, C. Jensen, and
V. Cahill, “Kaffemik - a Distributed JVM Featuring a
Single Address Space Architecture,” in Proceedings of
the 2001 Symposium on Java Virtual Machine
Research and Technology Symposium, 2001.

[21] Y. Aridor, M. Factor, and A. Teperman, “cJVM: A
single system image of a JVM on a cluster,” in
Proceedings of the 1999 International Conference on
Parallel Processing, 1999.

[22] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis,” in
Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems,
Languages, and Applications, 2006.

[23] J. Bonér and E. Kuleshov, “Clustering the Java Virtual
Machine using Aspect-Oriented Programming,” in
Proceedings of the 6th International Conference on
Aspect-Oriented Software Development, 2007.

[24] C. Cameron, J. Singer, and D. Vengerov, “The
Judgment of Forseti: Economic Utility for Dynamic
Heap Sizing of Multiple Runtimes,” in Proceedings of
the 2015 ACM SIGPLAN International Symposium on
Memory Management, 2015.

[25] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley,
“The Yin and Yang of Power and Performance for
Asymmetric Hardware and Managed Software,” in
Proceedings of the 39th Annual International
Symposium on Computer Architecture, 2012.

[26] D. Cheriton, “The V Distributed System,” Commun.
ACM, vol. 31, no. 3, pp. 314–333, Mar. 1988.

[27] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird,
M. Moretó, D. Chou, B. Gluzman, E. Roman, D. B.
Bartolini, N. Mor, K. Asanović, and J. D.
Kubiatowicz, “Tessellation: Refactoring the OS
Around Explicit Resource Containers with Continuous



Adaptation,” in Proceedings of the 50th Annual Design
Automation Conference, 2013.

[28] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears, “Benchmarking Cloud
Serving Systems with YCSB,” in Proceedings of the
1st ACM Symposium on Cloud Computing, 2010.

[29] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-value
Store,” in Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, 2007.

[30] C. Delimitrou and C. Kozyrakis, “Quasar:
Resource-efficient and QoS-aware Cluster
Management,” in Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
2014.

[31] H. Fan, A. Ramaraju, M. McKenzie, W. Golab, and
B. Wong, “Understanding the Causes of Consistency
Anomalies in Apache Cassandra,” Proceedings of the
VLDB Endowment, vol. 8, no. 7, 2015.

[32] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and
N. Nguyen, “NumaGiC: A Garbage Collector for Big
Data on Big NUMA Machines,” in Proceedings of the
Twentieth International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2015.

[33] I. Gog, J. Giceva, M. Schwarzkopf, K. Viswani,
D. Vytiniotis, G. Ramalingan, M. Costa, D. Murray,
S. Hand, and M. Isard, “Broom: sweeping out Garbage
Collection from Big Data systems,” in Proceedings of
the 15th USENIX/ACM Workshop on Hot Topics in
Operating Systems (HotOS 2015), 2015.

[34] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica, “GraphX: Graph
Processing in a Distributed Dataflow Framework,” in
Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, 2014.

[35] T. Harris, M. Maas, and V. J. Marathe, “Callisto:
Co-scheduling Parallel Runtime Systems,” in
Proceedings of the Ninth European Conference on
Computer Systems, 2014.

[36] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: a platform for fine-grained resource sharing
in the data center,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and
Implementation, 2011.

[37] P. Hintjens, “ZeroMQ: The Guide,” Tech. Rep., 2010.
[Online]. Available: http://zguide.zeromq.org/page:all

[38] G. C. Hunt and J. R. Larus, “Singularity: Rethinking
the Software Stack,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 2, pp. 37–49, Apr. 2007.

[39] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“ZooKeeper: Wait-free Coordination for Internet-scale
Systems,” in Proceedings of the 2010 USENIX Annual
Technical Conference, 2010.

[40] R. Jones and R. Lins, Garbage Collection: Algorithms
for Automatic Dynamic Memory Management.
Wiley, Sep. 1996.

[41] M. Jordan, L. Daynès, G. Czajkowski, M. Jarzab, and
C. Bryce, “Scaling J2EE Application Servers with the
Multi-tasking Virtual Machine,” Sun Microsystems,
Inc., Mountain View, CA, USA, Tech. Rep., 2004.

[42] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus,
J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder, “Impala: A modern, open-source SQL
engine for hadoop,” in Seventh Biennial Conference on
Innovative Data Systems Research, 2015.

[43] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars,
“Protean Code: Achieving Near-Free Online Code
Transformations for Warehouse Scale Computers,” in
Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014.

[44] E. D. Lazowska, H. M. Levy, G. T. Almes, M. J.
Fischer, R. J. Fowler, and S. C. Vestal, “The
Architecture of the Eden System,” in Proceedings of
the Eighth ACM Symposium on Operating Systems
Principles, 1981.

[45] M. Maas, K. Asanovic, T. Harris, and J. Kubiatowicz,
“The Case for the Holistic Language Runtime
System,” in First International Workshop on
Rack-scale Computing (WRSC ’14), 2014.

[46] M. Maas, T. Harris, K. Asanovic, and J. Kubiatowicz,
“Trash Day: Coordinating Garbage Collection in
Distributed Systems,” in Proceedings of the 15th
USENIX/ACM Workshop on Hot Topics in Operating
Systems (HotOS 2015), 2015.

[47] M. Maas and R. McIlroy, “A JVM for the Barrelfish
Operating System,” in 2nd Workshop on Systems for
Future Multi-core Architectures (SFMA ’12), 2012.

[48] L. A. Meyerovich and A. S. Rabkin, “Empirical
Analysis of Programming Language Adoption,” in
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages & Applications, 2013.

[49] S. Mullender, G. van Rossum, A. Tananbaum, R. van
Renesse, and H. van Staveren, “Amoeba: a distributed



operating system for the 1990s,” Computer, vol. 23,
no. 5, pp. 44–53, May 1990.

[50] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and
G. Xu, “FACADE: A Compiler and Runtime for
(Almost) Object-Bounded Big Data Applications,” in
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2015.

[51] D. Ongaro and J. Ousterhout, “In Search of an
Understandable Consensus Algorithm,” in
Proceedings of the 2014 USENIX Annual Technical
Conference, 2014.

[52] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman, “The Case for
RAMClouds: Scalable High-performance Storage
Entirely in DRAM,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 4, pp. 92–105, Jan. 2010.

[53] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N.
Nelson, and B. B. Welch, “The Sprite Network
Operating System,” Computer, vol. 21, no. 2, pp.
23–36, Feb. 1988.

[54] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B.-G. Chun, “Making Sense of Performance in Data
Analytics Frameworks,” in 12th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 15), 2015.

[55] A. Portillo-Dominguez, M. Wang, J. Murphy, and
D. Magoni, “Adaptive GC-Aware Load Balancing
Strategy for High-Assurance Java Distributed
Systems,” in 16th International Symposium on High
Assurance Systems Engineering (HASE), 2015.

[56] A. O. Portillo-Domínguez, M. Wang, D. Magoni,
P. Perry, and J. Murphy, “Load balancing of Java
applications by forecasting garbage collections,” 2014.

[57] M. Schwarzkopf, M. P. Grosvenor, and S. Hand, “New
Wine in Old Skins: The Case for Distributed Operating
Systems in the Data Center,” in Proceedings of the 4th
Asia-Pacific Workshop on Systems, 2013.

[58] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes, “Omega: flexible, scalable schedulers
for large compute clusters,” in Proceedings of the 8th
European Conference on Computer Systems, 2013.

[59] J. Simão, J. Lemos, and L. Veiga, “A2-VM : A
Cooperative Java VM with Support for
Resource-Awareness and Cluster-Wide Thread
Scheduling,” in On the Move to Meaningful Internet

Systems: OTM 2011, ser. Lecture Notes in Computer
Science, 2011.

[60] D. Smiley and D. E. Pugh, Apache Solr 3 Enterprise
Search Server. Packt Publishing Ltd, 2011.

[61] G. Tene, B. Iyengar, and M. Wolf, “C4: The
Continuously Concurrent Compacting Collector,” in
Proceedings of the International Symposium on
Memory Management, 2011.

[62] D. Terei and A. Levy, “Blade: A Data Center Garbage
Collector,” arXiv:1504.02578 [cs], Apr. 2015, arXiv:
1504.02578.

[63] D. Tsafrir, Y. Etsion, D. G. Feitelson, and
S. Kirkpatrick, “System Noise, OS Clock Ticks, and
Fine-grained Parallel Applications,” in Proceedings of
the 19th Annual International Conference on
Supercomputing, 2005.

[64] K. Varda, Protocol buffers: Google’s data interchange
format, 2008.

[65] N. Wakart, “Correcting YCSB’s Coordinated
Omission problem,” Mar. 2015. [Online]. Available:
http://psy-lob-saw.blogspot.com/2015/03/fixing-ycsb-
coordinated-omission.html

[66] T. White, Hadoop: The Definitive Guide: The
Definitive Guide. O’Reilly Media, 2009.

[67] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica, “Shark: SQL and Rich
Analytics at Scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, 2013.

[68] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica, “Spark: Cluster Computing
with Working Sets,” in Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud
Computing, 2010.

[69] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica,
“Discretized Streams: An Efficient and Fault-tolerant
Model for Stream Processing on Large Clusters,” in
Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Ccomputing, 2012.

[70] W. Zhu, C.-L. Wang, and F. Lau, “JESSICA2: a
distributed Java Virtual Machine with transparent
thread migration support,” in Proceedings of the IEEE
International Conference on Cluster Computing, 2002.

[71] J. N. Zigman and R. Sankaranarayana, “dJVM-A
distributed JVM on a Cluster,” Australian National
University, Tech. Rep., 2002.




