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Cryptographic Construct

OBLIvious RAM
CoNvEY HC-2Ex

PHANTOM

High-performance, FPGA-based platform

Secure Processor



Orgamzatlons move to the cloud

g government, financial/medical companies
Raises privacy concerns for sensitive data
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Computation on Encrypted Data

Sealed (tamper-proof),
Remote attestation

M
encrypted
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e.0. Secure Processors (AEGIS, XOM, AISE-BMT),
IBM Cryptographic Coprocessors, Intel SGX



Memory Address Leakage

Sealed (tamper-proof), Memory Addresses (plaintext)

Remote attestation %% _
DRAM
encrypted

> encrypted
Leaks e.g. transactions, subjects of surveillance/
audit, geolocations, OS fingerprints, crypto keys




A real-world example: SQLite

SElEGT populatlen FROM all eountles in <Texas/ California>
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Physical Memory Address
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Memory Accesses (Tlme)



We want to prevent this
information leakage
Inthe context of a secure processor



Oblivious RAM (ORAM)

Problem investigated since 1981

Originally for memory accesses of a
processor, later for e.g. FSs, DBs....

e Algorithms required MBs of trusted

storage or complex ( x Hardware)



Path ORAM (CCS’13, Best Paper)

New algorithm by Stefanov et al.

Low requirement

enough to implement in
hardware on a secure processor



Where's the problem?

How hard can it be to put Path
ORAM into a processor?




1. ORAM Microarchitecture

Prior work algorithmic, ignores ORAIM
microarchitectural implementation

ORAM needs to fully utilize resources

 You need to build it to find the details
not apparent from the algorithm



2. Practicality on real system

« Want obliviousness for real systems

Custom chips (ASICs) very expensive
unless widely adopted

 Thereisatrend towards FPGA-based
accelerators (programmable H/W)



PHANTOM: A Practical Oblivious
Computing Platform

Featuring an ORAM microarchitecture
implemented on an FPGA platform




Overview

1. Overview & Attack Model

2. Path Oblivious RAM

3. The Oblivious Memory System
4. Building PHANTOM

9. Evaluation



PARTI
Attack Model and Deployment



PHANTOM Overview

Data Center

Remote Attestation

Custom Application Logic/
Secure CPU

Oblivious Memory System

Untrusted Memory

PHANTOM




Attack Model

Ourfocus —, MemoryTrg‘g: (data, addresses....

Remote Attestation

Other digital - . * Analog (radiation,
0S..) Custom Application Logic/ : power,..)

Secure CPU

Oblivious Memory System

Orthogonal



PARTII
Path Oblivious RAM



Path Oblivious RAM

Oblivious memory is divided into blocks:

When accessing a block through Path ORAM
Request block
Path ORAM
<€ (Confidential state)

Read/write to

requested block Random appearing

DRAM accesses



Path Oblivious RAM
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Required Stash Size

Blocks stay behind in the stash

How large does the stash have to be
to never overflow?

Bound known up to constant factors:
determined constants empirically



PART I
The Oblivious Memory System



The Oblivious Memory System

Remote Attestation

Custom Application Logic/
Secure CPU

Oblivious Memory System

Untrusted Memory



High-throughput Memory
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High-throughput Memory

: Path Read Phase i Path Write Phase .
Lookup Memory Read AES Stash AES Memory Writeback
Decrypt Encrypt Design ycles
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Writing Back Blocks

-0r each node in the path, select an entry from
the stash to write to it (or put a dummy).



Time to pick a block

In our case, we have to pick
the next block (otherwise we will stall
the memory system).

Examining all blocks takes C cycles
for each block. stash size



Picking from the full stash

: Path Read Phase i Path Write Phase .
Lookup Memory Read AES Stash AES Memory Writeback )
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Adding a sorting step

: Path Read Phase Path Write Phase
Lookup Memory Read AES Stash AES Memory Wnteback
Decrypt Encrypt Design Cycles
R S S-S s B Basic 128bit 34816
? — e = 4 128 ety g 20 s 124 bvn E §
= g_,%——ns——»gw »| AES 2 F 8x Memory BW 4352
- g_’—vg_.“s_,%g »IAES ,§_>——§ 10880
- — F —is—»2 oISl F—==| | ClogCsorting 5248
3 ,J
2 . 2
—— &3 Sorting stage - g

] - Reuses Same Functional Units
as beginning of pipeline

nallenge:
emory

Note: 1000 cycles = 6.6us @ 150 MHz
(ORAM Size 10B. 17 level tree, 4KBblocks) ~ (We€P LD Wi

—= D
—




Heap-based Sorting

Path Read Phase Path Write Phase
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2.

Timing Channels

Operation is data-driven; risk to leak
information from timing

Jperation 2

time (avoidi

Jecouple [

ways take the maximum amount of
ng large overheads) or are overlapped

RAM timing variations

Challenge: Side Channels




DRAM Buffer

Absorb timing variations at periphery

i Timingisolation

Trust Boundary

--------

Address of path to access —

 Challe

nge: Side Channels



The Whole Picture

: Path Read Phase Path Write Phase
Lookup Memory Read AES Stash AES Memory Writeback
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PARTIV
Building PHANTOM



PHANTOM Prototype

Remote Attestation PHANTOM

Custom Application Logic/
Secure CPU

Oblivious Memory System

Convey Memory System (16 x 64b channels)

Implemented on Convey HC-2ex platform



Integrated W|th RISC YV CPU

e RISC-V.CPU PHANTOM

;
Data Cache Instruction Cache

Last-level Cache

Oblivious Memory System

Convey Memory System (16 x 64b channels)

Developed by UC Berkeley's Architecture Group



PHANTOM Secure Processor

Integrated a with ORAM

Loads and runs real-world programs,
including (in-memory)

« Not optimized for FPGA yet, very small
cache sizes (4KB/4KB/8KB)



Implementation on the HC-2ex

Use Convey development kit, bundles
Convey and user logic into

Implement Verilog module, interfaces
with MCs, management unit, etc.

Personality loaded by



Convey Personality Workflow
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Using this to build two-way communication channel



Interactlon with RISC-V CPU

- FPGA

' FPGA — FPGA | {6

<h

SG-V CPU runs independently but talks to host



ORAM Microarchitecture

Fully implemented, except remote
attestation and AES units

« ORAM controller tested/verified for

millions of random ORAM accesses
ORAM Block Size of 4KB (for now)



Implementation Challenges

and details

Min-heap, BRAM multiplexing, block
headers, stash management, block
caching, timing domains, inter-FPGA
communication, block buffering....



Min-heap Implementation

Need to write and look at at
every step, running at 150 Mhz
Pre-fetch four grandchildren Splitinto multiple BRAMs to
to avoid long combinational avoid limitation to 2 ports

path (read and write to BRAM
inthe same cycle)




Synthesized FPGA Design

Virtex-6 LX760
FPGA '

=& (=3



PARTYV
Evaluation



ORAM Access times
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Application Performance

Simulation (Caches:
16KB/32KB/1IMB)

— | | | | | w FPGA Prototype (Caches:
sqlite-queryl : : : : : : 4KB/4KB/8KB)

w No ORAM

sqlite-query2

Execution Time normalized to no ORAM

20%-5.5x Overhead (IMB LLC) 1GB ORAM



Future Work

Prototypeisa

Integrate additional Path ORAM
optimizations, HW/SW co-design

/0S support to avoid ORAM
accesses and reduce size of ORAMs



Conclusion

Investigated ORAM microarchitecture
to exploit high memory bandwidth

PHANTOM: Make oblivious computation
practical on existing hardware
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