
A HIGH-PERFORMANCE OBLIVIOUS RAM CONTROLLER ON THE
CONVEY HC-2EX HETEROGENEOUS COMPUTING PLATFORM

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari
Elaine Shi, Krste Asanovic, John Kubiatowicz, Dawn Song

BASED ON “PHANTOM: PRACTICAL OBLIVIOUS COMPUTATION IN A SECURE PROCESSOR” FROM CCS-2013!

A HIGH-PERFORMANCE OBLIVIOUS RAM CONTROLLER ON THE
CONVEY HC-2EX HETEROGENEOUS COMPUTING PLATFORM

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari
Elaine Shi, Krste Asanovic, John Kubiatowicz, Dawn Song

BASED ON “PHANTOM: PRACTICAL OBLIVIOUS COMPUTATION IN A SECURE PROCESSOR” FROM CCS-2013!

Cryptographic Construct!

High-performance, FPGA-based platform!

Secure Processor!

Organizations move to the cloud

E.g. government, financial/medical companies
Raises privacy concerns for sensitive data

Attackers with Physical Access

Malicious
Employees Intruders Government

Surveillance

Chanpipat,!FreeDigitalPhotos.net!

Physical Attack Vectors

E.g. replace DRAM DIMMs with NVDIMMs that have
non-volatile storage to record accesses

Computation on Encrypted Data

e.g. Secure Processors (AEGIS, XOM, AISE-BMT),
IBM Cryptographic Coprocessors, Intel SGX

DRAM!

Hard!Drive,!etc.!

Sealed (tamper-proof),
Remote attestation!

encrypted!
encrypted!

CPU!

Memory Address Leakage

Leaks e.g. transactions, subjects of surveillance/
audit, geolocations, OS fingerprints, crypto keys

DRAM!

Hard!Drive,!etc.!

encrypted!
encrypted!

CPU!

Memory Addresses (plaintext)!Sealed (tamper-proof),
Remote attestation!

Loading database Query

SELECT population FROM all counties in <Texas | California>

California

Texas

Re
ad

 da
tab

ase

Qu
ery

SE
LE

CT
 M

/F
 FR

OM
 al

l c
ou

nt
ies

 in
…
 Ca

lif
or

ni
a

Te
xa

s

Ph
ys

ica
l M

em
or

y A
dd

re
ss

Memory Accesses (Time)

A real-world example: SQLite

We want to prevent this
information leakage

In the context of a secure processor

Oblivious RAM (ORAM)
•  Problem investigated since 1987
•  Originally for memory accesses of a

processor, later for e.g. FSs, DBs,...
•  Algorithms required MBs of trusted

storage or complex (✗ Hardware)

Path ORAM (CCS’13, Best Paper)
New algorithm by Stefanov et al.

✔ Low trusted storage requirement
✔ Simple enough to implement in
 hardware on a secure processor

Where’s the problem?
How hard can it be to put Path

ORAM into a processor?

1. ORAM Microarchitecture
•  Prior work algorithmic, ignores ORAM

microarchitectural implementation
•  ORAM needs to fully utilize resources
•  You need to build it to find the details

not apparent from the algorithm

2. Practicality on real system
•  Want obliviousness for real systems
•  Custom chips (ASICs) very expensive

unless widely adopted
•  There is a trend towards FPGA-based

accelerators (programmable H/W)

PHANTOM: A Practical Oblivious
Computing Platform

Featuring an ORAM microarchitecture
implemented on an FPGA platform

Overview
1.  Overview & Attack Model
2.  Path Oblivious RAM
3.  The Oblivious Memory System
4. Building PHANTOM
5.  Evaluation

PART I
Attack Model and Deployment

PHANTOM Overview
Data Center!

PHANTOM!!

Client!

!

Attack Model
Memory Traffic (data, addresses,...)!

Analog (radiation,
power,...)!

Other digital
(OS,...)!

Our focus!

Orthogonal!

PART II
Path Oblivious RAM

Path Oblivious RAM

A! B! C! D! E! F! …!

Oblivious memory is divided into blocks:!

When accessing a block through Path ORAM!
Request block!

Random appearing
DRAM accesses!

Read/write to
requested block!

000! 001! 010! 011!

1!

0! 1!

0!

0! 1!

0! 1! 0! 1!

100! 101! 110! 111!

0! 1! 0! 1!

B! F! A! E! Stash (secure)!

Path Oblivious RAM
Block&ID& Leaf&ID&

A! 101!

B! 011!

C! 000!

D! 010!

E! 101!

F! 010!

Position Map (secure)!

A! 101!A! 101!011!

D

C!

Required Stash Size
•  Blocks stay behind in the stash
•  How large does the stash have to be

to never overflow?
•  Bound known up to constant factors:

determined constants empirically

PART III
The Oblivious Memory System

The Oblivious Memory System
PHANTOM!!

Design& Cycles&

Basic!128bit! 34816!

High-throughput Memory

Challenge:
✔ Memory Bandwidth (ORAM Size 1GB, 17 level tree, 4KB blocks)

Design& Cycles&

Basic!128bit! 34816!

8x!Memory!BW! 4352!

Note: 1,000 cycles = 6.6us @ 150 MHz

AES counter mode!

?!

High-throughput Memory

Challenge:
Keep up with memory (ORAM Size 1GB, 17 level tree, 4KB blocks)

Design& Cycles&

Basic!128bit! 34816!

8x!Memory!BW! 4352!

Note: 1,000 cycles = 6.6us @ 150 MHz

AES counter mode!

?!

Writing Back Blocks
Leaf&ID,…& Block&Contents&

110! 0xcafecafecafecafecafecafecafe…!

011! 0xcafecafecafecafecafecafecafe…!

010! …!

110!

111!

011!

110!

010!

111!

000!

000!

…!

110!

?!

For each node in the path, select an entry from
the stash to write to it (or put a dummy).

Time to pick a block
•  In our case, we have 32 cycles to pick

the next block (otherwise we will stall
the memory system).

•  Examining all blocks takes C cycles
for each block. stash size!

Picking from the full stash

Challenge:
Keep up with memory (ORAM Size 1GB, 17 level tree, 4KB blocks)

Design& Cycles&

Basic!128bit! 34816!

8x!Memory!BW!
4352!
10880!

Note: 1,000 cycles = 6.6us @ 150 MHz

C cycles to select next block
to write back, C = 128!

Adding a sorting step

Challenge:
Keep up with memory (ORAM Size 1GB, 17 level tree, 4KB blocks)

Design& Cycles&

Basic!128bit! 34816!

8x!Memory!BW!
4352!
10880!

C!log!C!SorNng! 5248!

Note: 1,000 cycles = 6.6us @ 150 MHz

Sorting stage!

Heap-based Sorting

Challenge:
✔ Keep up with memory (ORAM Size 1GB, 17 level tree, 4KB blocks)

Design& Cycles&

Basic!128bit! 34816!

8x!Memory!BW!
4352!
10880!

C!log!C!SorNng! 5248!

Fully!overlap! 4352!

Note: 1,000 cycles = 6.6us @ 150 MHz

Insert! Extract!

Timing Channels
Operation is data-driven; risk to leak
information from timing

1.  Operation always take the maximum amount of
time (avoiding large overheads) or are overlapped

2.  Decouple DRAM timing variations
 Challenge: Side Channels

DRAM Buffer

Memory!Request!
GeneraNon!Logic!

DRAM!

DRAM!Buffer!
All!other!PHANTOM!state!
(Stash,!Sorter,!AES!Units)!

Address of path to access!

Timing isolation&

Absorb timing variations at periphery

✔ Challenge: Side Channels

Trust Boundary!

The Whole Picture

More details can be found in the paper

PART IV
Building PHANTOM

PHANTOM Prototype

Implemented on Convey HC-2ex platform

X86!Host!
CPU!

Host!DRAM!

Management!
Processor!

FPGA! FPGA! FPGA! FPGA!

Crossbar!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

FPGA!PHANTOM!!

Integrated with RISC-V CPU

Developed by UC Berkeley’s Architecture Group

X86!Host!
CPU!

Host!DRAM!

Management!
Processor!

FPGA! FPGA! FPGA! FPGA!

Crossbar!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

FPGA!PHANTOM!Host!Interface!

PHANTOM Secure Processor
•  Integrated a RISC-V CPU with ORAM
•  Loads and runs real-world programs,

including (in-memory) SQLite
•  Not optimized for FPGA yet, very small

cache sizes (4KB/4KB/8KB)

Implementation on the HC-2ex
•  Use Convey development kit, bundles

Convey and user logic into personality
•  Implement Verilog module, interfaces

with MCs, management unit, etc.
•  Personality loaded by Convey runtime

Convey Personality Workflow

Using this to build two-way communication channel

X86!Host!
CPU!

Host!DRAM!

Management!
Processor!

FPGA! FPGA! FPGA! FPGA!

Crossbar!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

FPGA!X86!Host!
CPU!

Shared!Regs! Dispatch!

Personality!Logic!

Memory!Controllers!

Management!
Processor!

Management&
Processor&Code&

&

foo:!

!!mov!%8,!$1,!%aeg!
!!caep01.ae0!$0!

Convey&RunBTime&
!

init(personality);!
copcall(foo,!A,!B);!

do_work(...);!

Interaction with RISC-V CPU

RISC-V CPU runs independently but talks to host

X86!Host!
CPU!

Host!DRAM!

Management!
Processor!

FPGA! FPGA! FPGA! FPGA!

Crossbar!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

MC!

D
IM

M
!

D
IM

M
!

FPGA!X86!Host!
CPU!

Shared!Regs! Dispatch!

PHANTOM!(CPU+ORAM)!

Memory!Controllers!

Management!
Processor!

Management&
Processor&Glue&
•  Write!values!to!

shared!registers!

•  Blocking!caep!
&

FrontBend&Server&
•  Load!programs!

•  Execute!sysc
calls!for!the!

RISCcV!CPU!!

ORAM Microarchitecture
•  Fully implemented, except remote

attestation and AES units
•  ORAM controller tested/verified for

millions of random ORAM accesses
•  ORAM Block Size of 4KB (for now)

Implementation Challenges
•  Many challenges and unknown details
•  Min-heap, BRAM multiplexing, block

headers, stash management, block
caching, timing domains, inter-FPGA
communication, block buffering,...

Min-heap Implementation
Need to write and look at two children at
every step, running at 150 Mhz

Split into multiple BRAMs to
avoid limitation to 2 ports!

Pre-fetch four grandchildren
to avoid long combinational
path (read and write to BRAM
in the same cycle)!

Synthesized FPGA Design 3rd Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 2

1

2 3

0 1 2 3

0 1 2 3 0

Current comparison (will be written this cycle)

Current node

Nodes to be read from
BRAM during this cycle

Nodes read from BRAM
during previous cycle

Potential next
nodes

Figure 4: Min-heap implementation. The numbers represent the
BRAM each node is stored in. The four second-degree children
of a node are put into four BRAMs to access them in parallel.

checks in one cycle whether it can be written back into the
current position or not – if not, no other block can, and we
have to write a dummy.

We further improve on this approach by replacing the sort-
ing and selection stages by a min-heap (sorted by the cur-
rent path’s leaf ID). This replaces an O(C logC) operation
by O(logC) operations (each of which completely overlaps
either with a block arriving from or being written to mem-
ory), where C is the size of the stash. This makes it now
possible to overlap sorting completely with the path read
and selecting with the path write phase.

Stash Management & Treetop Caching: The stash ex-
ists as a temporary store for ORAM blocks, but it can also
be used to improve performance by securely caching ORAM
blocks on-chip. We can cache the top levels of the ORAM
tree inside the stash (we call this treetop caching) which
avoids fetching these parts of the path from DRAM. Since
the number of nodes is low at levels close to the root, caching
a few levels improves performance significantly while using
only modest amounts of trusted memory.

We designed Phantom’s stash management to support
treetop caching with minimal e↵ort (as well as other meth-
ods, such as LRU caching) by using a content-addressable
memory that serves as lookup-table for entries in the stash,
but is also used as directory for caching and as free-list to
find empty slots in the stash.

4.2 Preserving Security
Design principles for obliviousness: We use two simple
design principles to ensure that Phantom’s design does not
break Path ORAM’s obliviousness guarantees. Any opera-
tion – checking the position map, reordering, caching etc –
that depends on ORAM data is either a) statically fixed to
take the worst-case time or b) is overlapped with another
operation that takes strictly longer. Phantom’s decrypt
operation could, for example, be optimized by not decrypt-
ing dummy ORAM blocks – but this leaks information since
it would cause an operation to finish earlier depending on
whether the last block was a dummy or not. Instead, Phan-
tom pushes dummy blocks through the decryption units just
the same as actual data blocks. These two design principles
yield a completely deterministic Phantom pipeline.

Terminating timing channels at the periphery: The
DRAM interface requires further attention to ensure secu-
rity. Phantom sends path addresses to all DRAM con-
trollers in parallel, but these controllers do not always return
values in sync with each other. Although DRAM stalls do
not compromise obliviousness (DRAM activity is not con-
fidential), propagating these timing variations into Phan-

tom’s design can make timing analysis complicated. We

Figure 5: Synthesized design on a Virtex-6 LX760 FPGA

therefore introduce bu↵ers at the DRAM interface to isolate
the rest of Phantom’s ORAM controller from timing vari-
ations in the memory system. At the same time, all inputs
to the DRAM interface and their timing are public (a leaf id
and 1,024b of encrypted data per cycle during writeback),
so that no information can be leaked out of Phantom.

4.3 Implementation on the Convey HC-2ex
Phantom is implemented on one of the HC-2ex’s four Xil-

inx Virtex-6 LX760 (Figure 5), but some design points use
up to two more FPGAs to store the position map. It consists
of our custom designed ORAM controller and a single-core
in-order RISC-V [11] CPU developed in our group. The en-
tire project was implemented in Chisel [1], a new hardware
description language developed at UC Berkeley.
Due to constraints in the Convey system, the ORAM con-

troller had to run at 150 Mhz. Since this frequency was too
high for the CPU (which was originally designed for ASICs),
we put it into a second 75 Mhz clock domain available on
the Convey architecture, and use asynchronous FIFOs to
connect it to the ORAM controller. Nonetheless, without
rearchitecting part of the uncore, we are only able to run
with cache sizes of 4KB (IC), 4KB (DC) and 8KB (LLC),
while still overclocking the circuit slightly (synthesis results
di↵er between design points, but a representative example
has 73/142 Mhz for the respective clock domains). We hence
simulated larger cache sizes to get more realistic numbers.
Running the ORAM controller at this frequency posed a

number of challenges. For example, the position map took
up a large percentage of the FPGAs BRAMs, which added
a significant amount of routing pressure (and required us to
pipeline accesses to the position map by 4 levels, as well as
using design partitioning). Many other challenges were on
the microarchitectural level and include the following:

Heap Implementation: For some heap operations, a node
must be compared to both of its children, potentially dou-
bling the access latency to the heap, since each of the FPGA’s
BRAM memories has only one read and one write port. It
would be possible to split the heap into two memories (one
for even nodes, the other for odd nodes) so that the two
children of a node are always in di↵erent BRAMs and can
be accessed in the same cycle. However, this results in a cir-
cuit with paths from one BRAM through multiple levels of
logic to another BRAM, leading to a long critical path. We

4

Virtex-6 LX760
FPGA!

PART V
Evaluation

ORAM Access times

Average of 1M ORAM accesses each (4KB)

0!

5!

10!

15!

20!

25!

30!

35!

40!

0! 1! 2! 3! 0! 1! 2! 3! 0! 1! 2! 3! 0! 1! 2! 3! 0! 1! 2! 3! 0! 1! 2! 3! 0! 1! 2! 3!

13! 14! 15! 16! 17! 18! 19!

Tim
e p

er
 OR

AM
 ac

ce
ss

 (u
s)

Row 1: ORAM size in levels (64MB-4GB) - Row 2: # cached levels (k)

Time for read phase!

Total access time!
4719 cycles!

4352
cycles!

0.812us!

32x!

Application Performance

20%-5.5x Overhead (1MB LLC)

0! 2! 4! 6! 8! 10! 12! 14! 16!

sqlitecwarmup!

sqlitecquery1!

sqlitecquery2!

sqlitecquery3!

Execution Time normalized to no ORAM

Simulation (Caches:
16KB/32KB/1MB)

FPGA Prototype (Caches:
4KB/4KB/8KB)

No ORAM

1GB ORAM

Future Work
•  Prototype is a starting point
•  Integrate additional Path ORAM

optimizations, HW/SW co-design
•  Compiler/OS support to avoid ORAM

accesses and reduce size of ORAMs

Conclusion
•  Investigated ORAM microarchitecture

to exploit high memory bandwidth
•  PHANTOM: Make oblivious computation

practical on existing hardware

Thank you! Any Questions?!

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari
Elaine Shi, Krste Asanovic, John Kubiatowicz, Dawn Song

{maas, ericlove, emil}@eecs.berkeley.edu, tiwari@austin.utexas.edu,
elaine@cs.umd.edu, {krste, kubitron, dawnsong}@eecs.berkeley.edu

!

